$A_{cb}(G)$和$A_M(G)对偶中的不变子空间$

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
B. Forrest, J. Sawatzky, Aasaimani Thamizhazhagan
{"title":"$A_{cb}(G)$和$A_M(G)对偶中的不变子空间$","authors":"B. Forrest, J. Sawatzky, Aasaimani Thamizhazhagan","doi":"10.4310/amsa.2023.v8.n2.a3","DOIUrl":null,"url":null,"abstract":"Let $G$ be a locally compact group. In this paper, we study various invariant subspaces of the duals of the algebras $A_M(G)$ and $A_{cb}(G)$ obtained by taking the closure of the Fourier algebra $A(G)$ in the multiplier algebra $MA(G)$ and completely bounded multiplier algebra $M_{cb}A(G)$ respectively. In particular, we will focus on various functorial properties and containment relationships between these various invariant subspaces including the space of uniformly continuous functionals and the almost periodic and weakly almost periodic functionals. Amongst other results, we show that if $\\mathcal{A}(G)$ is either $A_M(G)$ or $A_{cb}(G)$, then $UCB(\\mathcal{A}(G))\\subseteq WAP(G)$ if and only if $G$ is discrete. We also show that if $UCB(\\mathcal{A}(G))=\\mathcal{A}(G)^*$, then every amenable closed subgroup of $G$ is compact. Let $i:A(G)\\to \\mathcal{A}(G)$ be the natural injection. We show that if $X$ is any closed topologically introverted subspace of $\\mathcal{A}(G)^*$ that contains $L^1(G)$, then $i^*(X)$ is closed in $A(G)$ if and only if $G$ is amenable.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant subspaces in the dual of $A_{cb}(G)$ and $A_M (G)$\",\"authors\":\"B. Forrest, J. Sawatzky, Aasaimani Thamizhazhagan\",\"doi\":\"10.4310/amsa.2023.v8.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a locally compact group. In this paper, we study various invariant subspaces of the duals of the algebras $A_M(G)$ and $A_{cb}(G)$ obtained by taking the closure of the Fourier algebra $A(G)$ in the multiplier algebra $MA(G)$ and completely bounded multiplier algebra $M_{cb}A(G)$ respectively. In particular, we will focus on various functorial properties and containment relationships between these various invariant subspaces including the space of uniformly continuous functionals and the almost periodic and weakly almost periodic functionals. Amongst other results, we show that if $\\\\mathcal{A}(G)$ is either $A_M(G)$ or $A_{cb}(G)$, then $UCB(\\\\mathcal{A}(G))\\\\subseteq WAP(G)$ if and only if $G$ is discrete. We also show that if $UCB(\\\\mathcal{A}(G))=\\\\mathcal{A}(G)^*$, then every amenable closed subgroup of $G$ is compact. Let $i:A(G)\\\\to \\\\mathcal{A}(G)$ be the natural injection. We show that if $X$ is any closed topologically introverted subspace of $\\\\mathcal{A}(G)^*$ that contains $L^1(G)$, then $i^*(X)$ is closed in $A(G)$ if and only if $G$ is amenable.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2023.v8.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2023.v8.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个局部紧致群。本文研究了代数$A_M(G)$和$A_{cb}(G)$对偶的各种不变子空间,这些对偶是由乘子代数$MA(G)和完全有界乘子代数$M中的傅立叶代数$A(G)的闭包得到的_{cb}A(G) 美元。特别地,我们将关注这些不同的不变子空间之间的各种函数性质和包含关系,包括一致连续泛函的空间和概周期和弱概周期泛函的空间。在其他结果中,我们证明了如果$\mathcal{A}(G)$是$A_M(G)或$A_{cb}。我们还证明了如果$UCB(\mathcal{A}(G))=\mathcal{A}(G)^*$,那么$G$的每个可服从闭子群都是紧致的。设$i:A(G)\to\mathcal{A}(G)$为自然注入。我们证明了如果$X$是$\mathcal{A}(G)^*$的包含$L^1(G)$的任何闭拓扑内敛子空间,那么$i^*(X)$在$A(G)中是闭的当且仅当$G$是可服从的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant subspaces in the dual of $A_{cb}(G)$ and $A_M (G)$
Let $G$ be a locally compact group. In this paper, we study various invariant subspaces of the duals of the algebras $A_M(G)$ and $A_{cb}(G)$ obtained by taking the closure of the Fourier algebra $A(G)$ in the multiplier algebra $MA(G)$ and completely bounded multiplier algebra $M_{cb}A(G)$ respectively. In particular, we will focus on various functorial properties and containment relationships between these various invariant subspaces including the space of uniformly continuous functionals and the almost periodic and weakly almost periodic functionals. Amongst other results, we show that if $\mathcal{A}(G)$ is either $A_M(G)$ or $A_{cb}(G)$, then $UCB(\mathcal{A}(G))\subseteq WAP(G)$ if and only if $G$ is discrete. We also show that if $UCB(\mathcal{A}(G))=\mathcal{A}(G)^*$, then every amenable closed subgroup of $G$ is compact. Let $i:A(G)\to \mathcal{A}(G)$ be the natural injection. We show that if $X$ is any closed topologically introverted subspace of $\mathcal{A}(G)^*$ that contains $L^1(G)$, then $i^*(X)$ is closed in $A(G)$ if and only if $G$ is amenable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信