为什么我们需要超越代谢组学的整体生物变异性评估?

J. Boccard, Serge Rudaz
{"title":"为什么我们需要超越代谢组学的整体生物变异性评估?","authors":"J. Boccard, Serge Rudaz","doi":"10.3389/frans.2023.1112390","DOIUrl":null,"url":null,"abstract":"Unlike other systems such as plants, microorganisms or fungi, human cells are not proficient in eliciting the production of defense compounds in response to external stresses and threats. Human metabolism is essentially based on a set of primary metabolites that participate in the various regulatory events of cells and tissues. The challenge is therefore to maintain homeostasis and allow the survival of the individual through the modulation of existing endogenous metabolic pathways with a relatively stable set of ubiquitous compounds. Since these complex regulatory phenomena are potentially subject to multiple influences, assessing their overall variability, as achieved by most conventional approaches, is not sufficiently informative. The experimental evaluation of several factors acting simultaneously on the metabolome is paramount. Because metabolomics involves the characterization of multivariate metabolic phenotypes, such a methodology requires specific data analysis tools to fully exploit the relevant information considering the different factors, as well as their respective impact on metabolite levels. The investigation of high-dimensional multifactorial data in metabolomics opens new challenges and requires the development of innovative experimental strategies involving structured designs of experiments to assess cause-effect associations and offer deeper insight into relevant biological information. In the future, key outputs should not only consider lists of metabolites, but also include their specific variation related to each effect that can be identified and/or quantified, thus allowing accurate biochemical and functional relationships to be highlighted.","PeriodicalId":73063,"journal":{"name":"Frontiers in analytical science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why do we need to go beyond overall biological variability assessment in metabolomics?\",\"authors\":\"J. Boccard, Serge Rudaz\",\"doi\":\"10.3389/frans.2023.1112390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike other systems such as plants, microorganisms or fungi, human cells are not proficient in eliciting the production of defense compounds in response to external stresses and threats. Human metabolism is essentially based on a set of primary metabolites that participate in the various regulatory events of cells and tissues. The challenge is therefore to maintain homeostasis and allow the survival of the individual through the modulation of existing endogenous metabolic pathways with a relatively stable set of ubiquitous compounds. Since these complex regulatory phenomena are potentially subject to multiple influences, assessing their overall variability, as achieved by most conventional approaches, is not sufficiently informative. The experimental evaluation of several factors acting simultaneously on the metabolome is paramount. Because metabolomics involves the characterization of multivariate metabolic phenotypes, such a methodology requires specific data analysis tools to fully exploit the relevant information considering the different factors, as well as their respective impact on metabolite levels. The investigation of high-dimensional multifactorial data in metabolomics opens new challenges and requires the development of innovative experimental strategies involving structured designs of experiments to assess cause-effect associations and offer deeper insight into relevant biological information. In the future, key outputs should not only consider lists of metabolites, but also include their specific variation related to each effect that can be identified and/or quantified, thus allowing accurate biochemical and functional relationships to be highlighted.\",\"PeriodicalId\":73063,\"journal\":{\"name\":\"Frontiers in analytical science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in analytical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frans.2023.1112390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in analytical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frans.2023.1112390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与植物、微生物或真菌等其他系统不同,人类细胞并不擅长诱导防御化合物的产生以应对外部压力和威胁。人类代谢基本上是基于一组参与细胞和组织各种调节事件的初级代谢产物。因此,挑战在于通过用一组相对稳定的普遍存在的化合物调节现有的内源性代谢途径来维持体内平衡并允许个体生存。由于这些复杂的调节现象可能会受到多种影响,因此,通过大多数传统方法来评估它们的总体可变性并不能提供足够的信息。同时作用于代谢组的几个因素的实验评估是至关重要的。由于代谢组学涉及多变量代谢表型的表征,因此这种方法需要特定的数据分析工具来充分利用考虑不同因素的相关信息,以及它们对代谢物水平的各自影响。代谢组学中高维多因素数据的研究带来了新的挑战,需要开发创新的实验策略,包括结构化的实验设计,以评估因果关系,并对相关生物信息提供更深入的见解。未来,关键输出不仅应考虑代谢物列表,还应包括与每种影响相关的具体变化,这些变化可以被识别和/或量化,从而突出准确的生物化学和功能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why do we need to go beyond overall biological variability assessment in metabolomics?
Unlike other systems such as plants, microorganisms or fungi, human cells are not proficient in eliciting the production of defense compounds in response to external stresses and threats. Human metabolism is essentially based on a set of primary metabolites that participate in the various regulatory events of cells and tissues. The challenge is therefore to maintain homeostasis and allow the survival of the individual through the modulation of existing endogenous metabolic pathways with a relatively stable set of ubiquitous compounds. Since these complex regulatory phenomena are potentially subject to multiple influences, assessing their overall variability, as achieved by most conventional approaches, is not sufficiently informative. The experimental evaluation of several factors acting simultaneously on the metabolome is paramount. Because metabolomics involves the characterization of multivariate metabolic phenotypes, such a methodology requires specific data analysis tools to fully exploit the relevant information considering the different factors, as well as their respective impact on metabolite levels. The investigation of high-dimensional multifactorial data in metabolomics opens new challenges and requires the development of innovative experimental strategies involving structured designs of experiments to assess cause-effect associations and offer deeper insight into relevant biological information. In the future, key outputs should not only consider lists of metabolites, but also include their specific variation related to each effect that can be identified and/or quantified, thus allowing accurate biochemical and functional relationships to be highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信