{"title":"黏性耗散存在下,纳米流体在多孔介质热渗透拉伸片上的非定常边界层流动","authors":"H. D. Hunegnaw","doi":"10.3329/jname.v18i1.51491","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsteady boundary layer flow of Williamson nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation\",\"authors\":\"H. D. Hunegnaw\",\"doi\":\"10.3329/jname.v18i1.51491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.51491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.51491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Unsteady boundary layer flow of Williamson nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation
The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.