黏性耗散存在下,纳米流体在多孔介质热渗透拉伸片上的非定常边界层流动

IF 1.2 Q3 ENGINEERING, MARINE
H. D. Hunegnaw
{"title":"黏性耗散存在下,纳米流体在多孔介质热渗透拉伸片上的非定常边界层流动","authors":"H. D. Hunegnaw","doi":"10.3329/jname.v18i1.51491","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method.  The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsteady boundary layer flow of Williamson nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation\",\"authors\":\"H. D. Hunegnaw\",\"doi\":\"10.3329/jname.v18i1.51491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method.  The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.51491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.51491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 5

摘要

本文的主要目的是在粘性耗散存在的情况下,对威廉森纳米流体在多孔介质中加热可渗透拉伸片上的非定常边界层流动进行数值研究。建立了一个类似于物理流动问题的数学模型。通过适当的变换,将有量纲非线性偏微分方程组转化为耦合的无量纲常微分方程组。利用四阶龙格-库塔射法得到了这些方程的数值解。对速度、温度和浓度的分布进行了数值讨论,并用图形表示。对表中给出的各种物理参数值,导出并数值讨论了板处的减薄摩擦系数、努塞尔数和舍伍德数的数值。在一些极限情况下,本文的结果与已有的结果进行了比较,得到了很好的验证。分析表明,随着非定常参数、磁性参数和孔隙率参数的增大,表面摩擦系数减小。此外,我们还观察到,随着非牛顿Williamson参数值的增加,流体流动的速度分布减小,Eckert数的增加导致热边界层中流体的温度升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady boundary layer flow of Williamson nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation
The main objective of this paper is to focus on a numerical study of unsteady boundary layer flow of Williamson Nanofluids over a heated permeable stretching sheet embedded in porous medium in the presence of viscous dissipation. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional nonlinear partial differential equations into system of coupled dimensionless ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method.  The velocity, temperature and concentration distributions are discussed numerically and presented through graphs. The numerical values of reduced skin-friction coefficient, Nusselt number and Sherwood number at the plate are derived and discussed numerically for various values of physical parameters which are presented through tables. The present results have been compared with existing one for some limiting case and found excellent validation. It is analyzed that the reduced skin friction coefficient enhances with increasing values of an unsteady parameter, magnetic parameter and porosity parameter. In addition, we observe that decrement in velocity profile of the fluid flow is observed for increasing values of the non-Newtonian Williamson parameter and a rise in Eckert number leads to the enhancement of the temperature of the fluid in the thermal boundary layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信