{"title":"超声波辅助不可食用橄榄油的酯化和酯交换反应提高了生物柴油的生产","authors":"M. Golmakani, L. Dehghan, N. Rahimizad","doi":"10.3989/gya.1233202","DOIUrl":null,"url":null,"abstract":"In the first phase of this study, inedible olive oil with different initial free fatty acid concentrations (2.5, 5.0, and 10.0%) was processed through acid-catalyzed esterification. Various heating methods were used for this purpose. The ultrasound-assisted esterification and traditional magnetic stirrer-assisted esterification methods were similar to each other in terms of their effects on free fatty acid reduction. However, the ultrasound reaction time was significantly shorter than that of the traditional magnetic stirrer. In the second phase of this study, biodiesel production was carried out through the ultrasound-assisted transesterification of inedible olive oil. Independent variables were, namely, ultrasound power level (30, 90, and 150 W), methanol/oil mole ratio (3, 9, and 15), catalyst concentration (0.5, 1.0, and 1.5%), ultrasound time (15, 30, and 45 min), and reaction temperature (45, 55, and 65 °C), which affected the yield indices and physicochemical constants of the produced biodiesel. The purest biodiesel (98.95%) and the highest amount of yield (92.69%) were observed when using an ultrasound power level of 90 W, a methanol/oil mole ratio of 9, a catalyst concentration of 1.0%, an ultrasound time of 30 min, and a reaction temperature of 55 °C. Optimizing the reaction conditions of the ultrasound operation can effectively increase the biodiesel yield (92.69%), while reducing the energy consumption (4.775 kWh/kg) and shortening the reaction time (30 min), compared to the traditional magnetic stirrer (77.28%, 2.17 kWh/kg, and 120 min, respectively). Therefore, ultrasound-assisted transesterification can serve as an effective alternative because of its fast and economic operation for making biodiesel out of inedible olive oil.","PeriodicalId":12839,"journal":{"name":"Grasas y Aceites","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodiesel production enhanced by ultrasound-assisted esterification and transesterification of inedible olive oil\",\"authors\":\"M. Golmakani, L. Dehghan, N. Rahimizad\",\"doi\":\"10.3989/gya.1233202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first phase of this study, inedible olive oil with different initial free fatty acid concentrations (2.5, 5.0, and 10.0%) was processed through acid-catalyzed esterification. Various heating methods were used for this purpose. The ultrasound-assisted esterification and traditional magnetic stirrer-assisted esterification methods were similar to each other in terms of their effects on free fatty acid reduction. However, the ultrasound reaction time was significantly shorter than that of the traditional magnetic stirrer. In the second phase of this study, biodiesel production was carried out through the ultrasound-assisted transesterification of inedible olive oil. Independent variables were, namely, ultrasound power level (30, 90, and 150 W), methanol/oil mole ratio (3, 9, and 15), catalyst concentration (0.5, 1.0, and 1.5%), ultrasound time (15, 30, and 45 min), and reaction temperature (45, 55, and 65 °C), which affected the yield indices and physicochemical constants of the produced biodiesel. The purest biodiesel (98.95%) and the highest amount of yield (92.69%) were observed when using an ultrasound power level of 90 W, a methanol/oil mole ratio of 9, a catalyst concentration of 1.0%, an ultrasound time of 30 min, and a reaction temperature of 55 °C. Optimizing the reaction conditions of the ultrasound operation can effectively increase the biodiesel yield (92.69%), while reducing the energy consumption (4.775 kWh/kg) and shortening the reaction time (30 min), compared to the traditional magnetic stirrer (77.28%, 2.17 kWh/kg, and 120 min, respectively). Therefore, ultrasound-assisted transesterification can serve as an effective alternative because of its fast and economic operation for making biodiesel out of inedible olive oil.\",\"PeriodicalId\":12839,\"journal\":{\"name\":\"Grasas y Aceites\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grasas y Aceites\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3989/gya.1233202\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grasas y Aceites","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3989/gya.1233202","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Biodiesel production enhanced by ultrasound-assisted esterification and transesterification of inedible olive oil
In the first phase of this study, inedible olive oil with different initial free fatty acid concentrations (2.5, 5.0, and 10.0%) was processed through acid-catalyzed esterification. Various heating methods were used for this purpose. The ultrasound-assisted esterification and traditional magnetic stirrer-assisted esterification methods were similar to each other in terms of their effects on free fatty acid reduction. However, the ultrasound reaction time was significantly shorter than that of the traditional magnetic stirrer. In the second phase of this study, biodiesel production was carried out through the ultrasound-assisted transesterification of inedible olive oil. Independent variables were, namely, ultrasound power level (30, 90, and 150 W), methanol/oil mole ratio (3, 9, and 15), catalyst concentration (0.5, 1.0, and 1.5%), ultrasound time (15, 30, and 45 min), and reaction temperature (45, 55, and 65 °C), which affected the yield indices and physicochemical constants of the produced biodiesel. The purest biodiesel (98.95%) and the highest amount of yield (92.69%) were observed when using an ultrasound power level of 90 W, a methanol/oil mole ratio of 9, a catalyst concentration of 1.0%, an ultrasound time of 30 min, and a reaction temperature of 55 °C. Optimizing the reaction conditions of the ultrasound operation can effectively increase the biodiesel yield (92.69%), while reducing the energy consumption (4.775 kWh/kg) and shortening the reaction time (30 min), compared to the traditional magnetic stirrer (77.28%, 2.17 kWh/kg, and 120 min, respectively). Therefore, ultrasound-assisted transesterification can serve as an effective alternative because of its fast and economic operation for making biodiesel out of inedible olive oil.
期刊介绍:
Grasas y Aceites is a peer-reviewed journal devoted to the publication of original articles concerning the broad field of lipids, especially edible fats and oils from different origins, including non acyl lipids from microbial origin relevant to the food industry. It publishes full research articles, research notes, reviews as well as information on references, patents, and books.
Grasas y Aceites publishes original articles on basic or practical research, as well as review articles on lipid related topics in food science and technology, biology, (bio)chemistry, medical science, nutrition, (bio)technology, processing and engineering. Topics at the interface of basic research and applications are encouraged. Manuscripts related to by-products from the oil industry and the handling and treatment of the wastewaters are also welcomed.
Topics of special interest to Grasas y Aceites are:
-Lipid analysis, including sensory analysis
-Oleochemistry, including lipase modified lipids
-Biochemistry and molecular biology of lipids, including genetically modified oil crops and micro-organisms
-Lipids in health and disease, including functional foods and clinical studies
-Technical aspects of oil extraction and refining
-Processing and storage of oleaginous fruit, especially olive pickling
-Agricultural practices in oil crops, when affecting oil yield or quality