Alberto Chiarini, Giovanni Conforti, Giacomo Greco, Luca Tamanini
{"title":"Schrödinger势的梯度估计:收敛到Brenier映射和定量稳定性","authors":"Alberto Chiarini, Giovanni Conforti, Giacomo Greco, Luca Tamanini","doi":"10.1080/03605302.2023.2215527","DOIUrl":null,"url":null,"abstract":"Abstract We show convergence of the gradients of the Schrödinger potentials to the (uniquely determined) gradient of Kantorovich potentials in the small-time limit under general assumptions on the marginals, which allow for unbounded densities and supports. Furthermore, we provide novel quantitative stability estimates for the optimal values and optimal couplings for the Schrödinger problem (SP), that we express in terms of a negative order weighted homogeneous Sobolev norm. The latter encodes the linearized behavior of the 2-Wasserstein distance between the marginals. The proofs of both results highlight for the first time the relevance of gradient bounds for Schrödinger potentials, that we establish here in full generality, in the analysis of the short-time behavior of Schrödinger bridges. Finally, we discuss how our results translate into the framework of quadratic Entropic Optimal Transport, that is a version of SP more suitable for applications in machine learning and data science.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"895 - 943"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gradient estimates for the Schrödinger potentials: convergence to the Brenier map and quantitative stability\",\"authors\":\"Alberto Chiarini, Giovanni Conforti, Giacomo Greco, Luca Tamanini\",\"doi\":\"10.1080/03605302.2023.2215527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show convergence of the gradients of the Schrödinger potentials to the (uniquely determined) gradient of Kantorovich potentials in the small-time limit under general assumptions on the marginals, which allow for unbounded densities and supports. Furthermore, we provide novel quantitative stability estimates for the optimal values and optimal couplings for the Schrödinger problem (SP), that we express in terms of a negative order weighted homogeneous Sobolev norm. The latter encodes the linearized behavior of the 2-Wasserstein distance between the marginals. The proofs of both results highlight for the first time the relevance of gradient bounds for Schrödinger potentials, that we establish here in full generality, in the analysis of the short-time behavior of Schrödinger bridges. Finally, we discuss how our results translate into the framework of quadratic Entropic Optimal Transport, that is a version of SP more suitable for applications in machine learning and data science.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"48 1\",\"pages\":\"895 - 943\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2215527\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2215527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Gradient estimates for the Schrödinger potentials: convergence to the Brenier map and quantitative stability
Abstract We show convergence of the gradients of the Schrödinger potentials to the (uniquely determined) gradient of Kantorovich potentials in the small-time limit under general assumptions on the marginals, which allow for unbounded densities and supports. Furthermore, we provide novel quantitative stability estimates for the optimal values and optimal couplings for the Schrödinger problem (SP), that we express in terms of a negative order weighted homogeneous Sobolev norm. The latter encodes the linearized behavior of the 2-Wasserstein distance between the marginals. The proofs of both results highlight for the first time the relevance of gradient bounds for Schrödinger potentials, that we establish here in full generality, in the analysis of the short-time behavior of Schrödinger bridges. Finally, we discuss how our results translate into the framework of quadratic Entropic Optimal Transport, that is a version of SP more suitable for applications in machine learning and data science.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.