多孔介质方程在时间和空间上的最佳规律性

IF 1.9 1区 数学 Q1 MATHEMATICS
B. Gess, J. Sauer, E. Tadmor
{"title":"多孔介质方程在时间和空间上的最佳规律性","authors":"B. Gess, J. Sauer, E. Tadmor","doi":"10.2140/apde.2020.13.2441","DOIUrl":null,"url":null,"abstract":"Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are consistent with the optimal regularity of the linear case.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimal regularity in time and space for the porous medium equation\",\"authors\":\"B. Gess, J. Sauer, E. Tadmor\",\"doi\":\"10.2140/apde.2020.13.2441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are consistent with the optimal regularity of the linear case.\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2020.13.2441\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2020.13.2441","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

多孔介质方程解在时间和空间上的正则性估计显示在Sobolev空间的尺度中。此外,还得到了解的幂的更高的空间正则性。标度论证表明这些估计是最优的。在线性极限中,已证明的正则性估计与线性情形的最优正则性是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal regularity in time and space for the porous medium equation
Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are consistent with the optimal regularity of the linear case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信