rn中具有卷积项的双相Kirchhoff问题多凸解的存在性和多重性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Shuaishuai Liang, S. Shi
{"title":"rn中具有卷积项的双相Kirchhoff问题多凸解的存在性和多重性","authors":"Shuaishuai Liang, S. Shi","doi":"10.3233/asy-231827","DOIUrl":null,"url":null,"abstract":"In this paper, we study a class of the ( p , q ) Kirchhoff type problems with convolution term in R N . With the appropriate assumptions on potential function V and convolution term f, together with the penalization techniques, Morse iterative method and variational method, the existence and multiplicity of multi-bump solutions are obtained for this problem. In some sense, our results also generalize some known results.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and multiplicity of multi-bump solutions for the double phase Kirchhoff problems with convolution term in R N\",\"authors\":\"Shuaishuai Liang, S. Shi\",\"doi\":\"10.3233/asy-231827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a class of the ( p , q ) Kirchhoff type problems with convolution term in R N . With the appropriate assumptions on potential function V and convolution term f, together with the penalization techniques, Morse iterative method and variational method, the existence and multiplicity of multi-bump solutions are obtained for this problem. In some sense, our results also generalize some known results.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231827\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231827","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类在RN中具有卷积项的(p,q)Kirchhoff型问题。通过对势函数V和卷积项f的适当假设,结合惩罚技术、Morse迭代法和变分法,得到了该问题多凸点解的存在性和多重性。在某种意义上,我们的结果也推广了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and multiplicity of multi-bump solutions for the double phase Kirchhoff problems with convolution term in R N
In this paper, we study a class of the ( p , q ) Kirchhoff type problems with convolution term in R N . With the appropriate assumptions on potential function V and convolution term f, together with the penalization techniques, Morse iterative method and variational method, the existence and multiplicity of multi-bump solutions are obtained for this problem. In some sense, our results also generalize some known results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信