{"title":"种群规模对形态和分子进化率的影响——使用面向对象的模型","authors":"Miłosława Sokół","doi":"10.1163/22244662-bja10009","DOIUrl":null,"url":null,"abstract":"\nA generalization of Moran model of evolution is created using object-oriented method of modelling. A population consists of individuals which have a genotype and a phenotype. The genotype is inherited by descendants and it can mutate. The phenotype is dependent on the genotype. Moreover, the phenotype causes changes in the fitness of the individuals (natural selection which four kinds are defined and analysed). Evolution of the population appears spontaneously. This model is used to analyse how population size influence the rate of evolution. Evolution is manifested by two processes: the increase of the phenotype size (morphological evolution) and number of mutations accumulated on genes (molecular evolution). The rate of evolution increases if population size increases. An adaptive natural selection causes nonlinear changes in the phenotype size and number of mutations accumulated on genes. A competitive natural selection causes linear evolution. A surviving natural selection causes the faster evolution than a reproductive natural selection.","PeriodicalId":50267,"journal":{"name":"Israel Journal of Ecology & Evolution","volume":"1 1","pages":"1-11"},"PeriodicalIF":1.3000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/22244662-bja10009","citationCount":"0","resultStr":"{\"title\":\"Impact of population size at a rate of morphological and molecular evolution – the use of an object-oriented model\",\"authors\":\"Miłosława Sokół\",\"doi\":\"10.1163/22244662-bja10009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nA generalization of Moran model of evolution is created using object-oriented method of modelling. A population consists of individuals which have a genotype and a phenotype. The genotype is inherited by descendants and it can mutate. The phenotype is dependent on the genotype. Moreover, the phenotype causes changes in the fitness of the individuals (natural selection which four kinds are defined and analysed). Evolution of the population appears spontaneously. This model is used to analyse how population size influence the rate of evolution. Evolution is manifested by two processes: the increase of the phenotype size (morphological evolution) and number of mutations accumulated on genes (molecular evolution). The rate of evolution increases if population size increases. An adaptive natural selection causes nonlinear changes in the phenotype size and number of mutations accumulated on genes. A competitive natural selection causes linear evolution. A surviving natural selection causes the faster evolution than a reproductive natural selection.\",\"PeriodicalId\":50267,\"journal\":{\"name\":\"Israel Journal of Ecology & Evolution\",\"volume\":\"1 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/22244662-bja10009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Ecology & Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1163/22244662-bja10009\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Ecology & Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1163/22244662-bja10009","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Impact of population size at a rate of morphological and molecular evolution – the use of an object-oriented model
A generalization of Moran model of evolution is created using object-oriented method of modelling. A population consists of individuals which have a genotype and a phenotype. The genotype is inherited by descendants and it can mutate. The phenotype is dependent on the genotype. Moreover, the phenotype causes changes in the fitness of the individuals (natural selection which four kinds are defined and analysed). Evolution of the population appears spontaneously. This model is used to analyse how population size influence the rate of evolution. Evolution is manifested by two processes: the increase of the phenotype size (morphological evolution) and number of mutations accumulated on genes (molecular evolution). The rate of evolution increases if population size increases. An adaptive natural selection causes nonlinear changes in the phenotype size and number of mutations accumulated on genes. A competitive natural selection causes linear evolution. A surviving natural selection causes the faster evolution than a reproductive natural selection.
期刊介绍:
The Israel Journal of Ecology and Evolution includes high-quality original research and review papers that advance our knowledge and understanding of the function, diversity, abundance, distribution, and evolution of organisms. We give equal consideration to all submissions regardless of geography.