基于物联网的基于朴素贝叶斯方法的BSF(Black Soldier Fly)媒体质量测量系统

Mohammad Faisal Fajar Fadilah, Ajib Hanani, Totok Chamidy
{"title":"基于物联网的基于朴素贝叶斯方法的BSF(Black Soldier Fly)媒体质量测量系统","authors":"Mohammad Faisal Fajar Fadilah, Ajib Hanani, Totok Chamidy","doi":"10.14421/jiska.2023.8.2.125-139","DOIUrl":null,"url":null,"abstract":"Piles of waste increase in line with population growth and consumption patterns. The concept of bioconversion using black soldier fly larvae can solve the problem of organic waste management. From these problems, an application of Internet of Things technology is needed. The system implemented aims to allow the system to find out how much accuracy, precision, and recall are in making decisions on media quality values using the Naive Bayes method. The main feature of this Naive Bayes Classifier is the very strong assumption of the independence of each condition or event. From the research results, the system has been successfully built according to the research design, as well as the goals that have been fulfilled in completing the development of the smart maggot. Several sensors used in this study were tested so that sensor performance could be determined by finding the average error value. Three parameters are measured; namely, the temperature obtained an average error of 1.6%, air humidity obtained an average error of 2.03%, and soil moisture obtained an average error of 2.7%. By measuring using Python, the Confusion Matrix is obtained so that the test results from the calculation of the Naive Bayes method can find the data in the form of accuracy, precision, and recall. Accuracy percentage results obtained 92%, precision percentage average results obtained 93%, and recall percentage average results obtained 92%. The conclusion shows the results of the system's accuracy obtained have worked well.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Pengukuran Kualitas Media pada Larva BSF (Black Soldier Fly) Berbasis Internet of Things Menggunakan Metode Naive Bayes\",\"authors\":\"Mohammad Faisal Fajar Fadilah, Ajib Hanani, Totok Chamidy\",\"doi\":\"10.14421/jiska.2023.8.2.125-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piles of waste increase in line with population growth and consumption patterns. The concept of bioconversion using black soldier fly larvae can solve the problem of organic waste management. From these problems, an application of Internet of Things technology is needed. The system implemented aims to allow the system to find out how much accuracy, precision, and recall are in making decisions on media quality values using the Naive Bayes method. The main feature of this Naive Bayes Classifier is the very strong assumption of the independence of each condition or event. From the research results, the system has been successfully built according to the research design, as well as the goals that have been fulfilled in completing the development of the smart maggot. Several sensors used in this study were tested so that sensor performance could be determined by finding the average error value. Three parameters are measured; namely, the temperature obtained an average error of 1.6%, air humidity obtained an average error of 2.03%, and soil moisture obtained an average error of 2.7%. By measuring using Python, the Confusion Matrix is obtained so that the test results from the calculation of the Naive Bayes method can find the data in the form of accuracy, precision, and recall. Accuracy percentage results obtained 92%, precision percentage average results obtained 93%, and recall percentage average results obtained 92%. The conclusion shows the results of the system's accuracy obtained have worked well.\",\"PeriodicalId\":34216,\"journal\":{\"name\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/jiska.2023.8.2.125-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2023.8.2.125-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成堆的垃圾随着人口增长和消费模式而增加。利用黑蝇幼虫进行生物转化的概念可以解决有机废物管理的问题。从这些问题出发,需要物联网技术的应用。所实现的系统旨在让系统了解使用朴素贝叶斯方法对媒体质量值进行决策的准确性、准确性和召回率。这种朴素贝叶斯分类器的主要特点是对每个条件或事件的独立性有很强的假设。从研究结果来看,该系统已根据研究设计成功构建,并完成了智能蛆的开发目标。对本研究中使用的几个传感器进行了测试,以便通过找到平均误差值来确定传感器性能。测量了三个参数;即温度平均误差1.6%,空气湿度平均误差2.03%,土壤湿度平均误差2.7%。通过使用Python进行测量,获得了Confusion矩阵,从而使Naive Bayes方法计算的测试结果能够以准确度、精密度和召回率的形式找到数据。准确度百分比结果获得92%,准确度百分比平均结果获得93%,召回率百分比平均结果得到92%。结论表明,所获得的系统精度结果运行良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Pengukuran Kualitas Media pada Larva BSF (Black Soldier Fly) Berbasis Internet of Things Menggunakan Metode Naive Bayes
Piles of waste increase in line with population growth and consumption patterns. The concept of bioconversion using black soldier fly larvae can solve the problem of organic waste management. From these problems, an application of Internet of Things technology is needed. The system implemented aims to allow the system to find out how much accuracy, precision, and recall are in making decisions on media quality values using the Naive Bayes method. The main feature of this Naive Bayes Classifier is the very strong assumption of the independence of each condition or event. From the research results, the system has been successfully built according to the research design, as well as the goals that have been fulfilled in completing the development of the smart maggot. Several sensors used in this study were tested so that sensor performance could be determined by finding the average error value. Three parameters are measured; namely, the temperature obtained an average error of 1.6%, air humidity obtained an average error of 2.03%, and soil moisture obtained an average error of 2.7%. By measuring using Python, the Confusion Matrix is obtained so that the test results from the calculation of the Naive Bayes method can find the data in the form of accuracy, precision, and recall. Accuracy percentage results obtained 92%, precision percentage average results obtained 93%, and recall percentage average results obtained 92%. The conclusion shows the results of the system's accuracy obtained have worked well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信