积分域上带系数的Leavitt路径代数的理想结构

IF 0.5 Q3 MATHEMATICS
Trinh Thanh Deo, Vo Thanh Chi
{"title":"积分域上带系数的Leavitt路径代数的理想结构","authors":"Trinh Thanh Deo, Vo Thanh Chi","doi":"10.24330/ieja.1229771","DOIUrl":null,"url":null,"abstract":"In this paper, we present results concerning the structure of the ideals in the Leavitt path algebra of a (countable) directed graph with coefficients in an integral domain, such as, describing the set of generators for an ideal; the necessary and sufficient conditions for an ideal to be prime; the necessary and sufficient conditions for a Leavitt path algebra to be simple. Besides, some other interesting properties of ideal structure in a Leavitt path algebra are also mentioned.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On some ideal structure of Leavitt path algebras with coefficients in integral domains\",\"authors\":\"Trinh Thanh Deo, Vo Thanh Chi\",\"doi\":\"10.24330/ieja.1229771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present results concerning the structure of the ideals in the Leavitt path algebra of a (countable) directed graph with coefficients in an integral domain, such as, describing the set of generators for an ideal; the necessary and sufficient conditions for an ideal to be prime; the necessary and sufficient conditions for a Leavitt path algebra to be simple. Besides, some other interesting properties of ideal structure in a Leavitt path algebra are also mentioned.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1229771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1229771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了在积分域上带系数的(可数)有向图的Leavitt路径代数中理想的结构的一些结果,例如:描述了理想的生成集;素数:理想为素数的充分必要条件;给出了莱维特路径代数简单的充分必要条件。此外,还讨论了莱维特路径代数中理想结构的其他一些有趣的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some ideal structure of Leavitt path algebras with coefficients in integral domains
In this paper, we present results concerning the structure of the ideals in the Leavitt path algebra of a (countable) directed graph with coefficients in an integral domain, such as, describing the set of generators for an ideal; the necessary and sufficient conditions for an ideal to be prime; the necessary and sufficient conditions for a Leavitt path algebra to be simple. Besides, some other interesting properties of ideal structure in a Leavitt path algebra are also mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信