{"title":"甲基磺酰甲烷(MSM)对脂多糖(LPS)诱导的猪肠上皮细胞(IPEC-J2)屏障功能损伤的保护作用","authors":"Y. Jiao, Hengjiang Li, Ting Ren, I. Kim","doi":"10.1139/cjas-2022-0141","DOIUrl":null,"url":null,"abstract":"Abstract Methylsulfonylmethane (MSM) is a natural organic sulfur component that has anti-inflammatory and antioxidant properties. In this study, injury of porcine intestinal epithelial cell (IPEC-J2) models were used to investigate the effect of MSM on lipopolysaccharide (LPS)-induced porcine intestinal epithelium barrier damage. The results of the cell cycle showed that the cells in the G2/M phase decreased significantly with the supplementation of 300 mmol/L MSM (P < 0.05). The ELISA assay revealed that MSM could significantly inhibit the expression of tumor necrosis factor-alpha, interleukin-1, and interleukin-6 (P < 0.01). Meanwhile, MSM could significantly increase the value of cell monolayer transepithelial electrical resistance while reducing the FITC-dextran flux permeability and lactate dehydrogenase activity in IPEC-J2 cells (P < 0.01). Additionally, 300 mmol/L MSM significantly increased both mRNA and protein expression of occludin, claudin-1, and ZO-1 (P < 0.05). Furthermore, MSM prevented the downregulation of epidermal growth factor receptor (EGFR) by LPS, indicating that MSM might enhance tight junction function through mechanisms of activation of EGFR-mediated protein synthesis in IPEC-J2 cells. Therefore, our findings suggested that MSM has protective effects on inflammation and epithelial barrier injury in LPS-induced IPEC-J2 cells, indicating that MSM might be used as a potential therapeutic agent in the pig industry.","PeriodicalId":9512,"journal":{"name":"Canadian Journal of Animal Science","volume":"103 1","pages":"262 - 272"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effects of methylsulfonylmethane (MSM) on barrier function injury of porcine intestinal epithelial cells (IPEC-J2) induced by lipopolysaccharide (LPS)\",\"authors\":\"Y. Jiao, Hengjiang Li, Ting Ren, I. Kim\",\"doi\":\"10.1139/cjas-2022-0141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Methylsulfonylmethane (MSM) is a natural organic sulfur component that has anti-inflammatory and antioxidant properties. In this study, injury of porcine intestinal epithelial cell (IPEC-J2) models were used to investigate the effect of MSM on lipopolysaccharide (LPS)-induced porcine intestinal epithelium barrier damage. The results of the cell cycle showed that the cells in the G2/M phase decreased significantly with the supplementation of 300 mmol/L MSM (P < 0.05). The ELISA assay revealed that MSM could significantly inhibit the expression of tumor necrosis factor-alpha, interleukin-1, and interleukin-6 (P < 0.01). Meanwhile, MSM could significantly increase the value of cell monolayer transepithelial electrical resistance while reducing the FITC-dextran flux permeability and lactate dehydrogenase activity in IPEC-J2 cells (P < 0.01). Additionally, 300 mmol/L MSM significantly increased both mRNA and protein expression of occludin, claudin-1, and ZO-1 (P < 0.05). Furthermore, MSM prevented the downregulation of epidermal growth factor receptor (EGFR) by LPS, indicating that MSM might enhance tight junction function through mechanisms of activation of EGFR-mediated protein synthesis in IPEC-J2 cells. Therefore, our findings suggested that MSM has protective effects on inflammation and epithelial barrier injury in LPS-induced IPEC-J2 cells, indicating that MSM might be used as a potential therapeutic agent in the pig industry.\",\"PeriodicalId\":9512,\"journal\":{\"name\":\"Canadian Journal of Animal Science\",\"volume\":\"103 1\",\"pages\":\"262 - 272\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Animal Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjas-2022-0141\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjas-2022-0141","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Protective effects of methylsulfonylmethane (MSM) on barrier function injury of porcine intestinal epithelial cells (IPEC-J2) induced by lipopolysaccharide (LPS)
Abstract Methylsulfonylmethane (MSM) is a natural organic sulfur component that has anti-inflammatory and antioxidant properties. In this study, injury of porcine intestinal epithelial cell (IPEC-J2) models were used to investigate the effect of MSM on lipopolysaccharide (LPS)-induced porcine intestinal epithelium barrier damage. The results of the cell cycle showed that the cells in the G2/M phase decreased significantly with the supplementation of 300 mmol/L MSM (P < 0.05). The ELISA assay revealed that MSM could significantly inhibit the expression of tumor necrosis factor-alpha, interleukin-1, and interleukin-6 (P < 0.01). Meanwhile, MSM could significantly increase the value of cell monolayer transepithelial electrical resistance while reducing the FITC-dextran flux permeability and lactate dehydrogenase activity in IPEC-J2 cells (P < 0.01). Additionally, 300 mmol/L MSM significantly increased both mRNA and protein expression of occludin, claudin-1, and ZO-1 (P < 0.05). Furthermore, MSM prevented the downregulation of epidermal growth factor receptor (EGFR) by LPS, indicating that MSM might enhance tight junction function through mechanisms of activation of EGFR-mediated protein synthesis in IPEC-J2 cells. Therefore, our findings suggested that MSM has protective effects on inflammation and epithelial barrier injury in LPS-induced IPEC-J2 cells, indicating that MSM might be used as a potential therapeutic agent in the pig industry.
期刊介绍:
Published since 1957, this quarterly journal contains new research on all aspects of animal agriculture and animal products, including breeding and genetics; cellular and molecular biology; growth and development; meat science; modelling animal systems; physiology and endocrinology; ruminant nutrition; non-ruminant nutrition; and welfare, behaviour, and management. It also publishes reviews, letters to the editor, abstracts of technical papers presented at the annual meeting of the Canadian Society of Animal Science, and occasionally conference proceedings.