{"title":"加筋砂土上偏心倾斜加载矩形基础的特性","authors":"Sujata Gupta, Anupam Mital","doi":"10.2478/sgem-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df/B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"43 1","pages":"74 - 89"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behaviour of eccentrically inclined loaded rectangular foundation on reinforced sand\",\"authors\":\"Sujata Gupta, Anupam Mital\",\"doi\":\"10.2478/sgem-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df/B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"43 1\",\"pages\":\"74 - 89\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Behaviour of eccentrically inclined loaded rectangular foundation on reinforced sand
Abstract This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df/B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories