低秩非负矩阵近似的速写:数值研究

Pub Date : 2022-01-26 DOI:10.1515/rnam-2023-0009
S. Matveev, S. Budzinskiy
{"title":"低秩非负矩阵近似的速写:数值研究","authors":"S. Matveev, S. Budzinskiy","doi":"10.1515/rnam-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract We propose new approximate alternating projection methods, based on randomized sketching, for the low-rank nonnegative matrix approximation problem: find a low-rank approximation of a nonnegative matrix that is nonnegative, but whose factors can be arbitrary. We calculate the computational complexities of the proposed methods and evaluate their performance in numerical experiments. The comparison with the known deterministic alternating projection methods shows that the randomized approaches are faster and exhibit similar convergence properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sketching for a low-rank nonnegative matrix approximation: Numerical study\",\"authors\":\"S. Matveev, S. Budzinskiy\",\"doi\":\"10.1515/rnam-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose new approximate alternating projection methods, based on randomized sketching, for the low-rank nonnegative matrix approximation problem: find a low-rank approximation of a nonnegative matrix that is nonnegative, but whose factors can be arbitrary. We calculate the computational complexities of the proposed methods and evaluate their performance in numerical experiments. The comparison with the known deterministic alternating projection methods shows that the randomized approaches are faster and exhibit similar convergence properties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要针对低秩非负矩阵逼近问题,提出了一种基于随机素描的交替逼近投影方法:求一个非负矩阵的低秩逼近,该矩阵非负,但其因子可以是任意的。我们计算了所提方法的计算复杂度,并在数值实验中评价了它们的性能。与已知的确定性交替投影方法的比较表明,随机化方法速度更快,且具有相似的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sketching for a low-rank nonnegative matrix approximation: Numerical study
Abstract We propose new approximate alternating projection methods, based on randomized sketching, for the low-rank nonnegative matrix approximation problem: find a low-rank approximation of a nonnegative matrix that is nonnegative, but whose factors can be arbitrary. We calculate the computational complexities of the proposed methods and evaluate their performance in numerical experiments. The comparison with the known deterministic alternating projection methods shows that the randomized approaches are faster and exhibit similar convergence properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信