Laksh Bhatia, Ivana Tomić, A. Fu, Michael J. Breza, J. Mccann
{"title":"广域网络物理系统的控制通信协同设计","authors":"Laksh Bhatia, Ivana Tomić, A. Fu, Michael J. Breza, J. Mccann","doi":"10.1145/3418528","DOIUrl":null,"url":null,"abstract":"Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators, and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control Communication Co-design approach for WA-CPSs, that we refer to as the C3 approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called Ctrl-MAC and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first article to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application, which we evaluate both through a co-simulator (modeling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to 50% better packet delivery ratios and 80% less average end-to-end delays when compared to a state-of-the-art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture, and show that the controller maintains stability and the overshoots remain within bounds.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3418528","citationCount":"13","resultStr":"{\"title\":\"Control Communication Co-Design for Wide Area Cyber-Physical Systems\",\"authors\":\"Laksh Bhatia, Ivana Tomić, A. Fu, Michael J. Breza, J. Mccann\",\"doi\":\"10.1145/3418528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators, and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control Communication Co-design approach for WA-CPSs, that we refer to as the C3 approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called Ctrl-MAC and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first article to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application, which we evaluate both through a co-simulator (modeling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to 50% better packet delivery ratios and 80% less average end-to-end delays when compared to a state-of-the-art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture, and show that the controller maintains stability and the overshoots remain within bounds.\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3418528\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3418528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Control Communication Co-Design for Wide Area Cyber-Physical Systems
Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators, and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control Communication Co-design approach for WA-CPSs, that we refer to as the C3 approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called Ctrl-MAC and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first article to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application, which we evaluate both through a co-simulator (modeling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to 50% better packet delivery ratios and 80% less average end-to-end delays when compared to a state-of-the-art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture, and show that the controller maintains stability and the overshoots remain within bounds.