M. Bernardini, E. J. García Cartagena, A. Mohammadi, A. Smits, S. Leonardi
{"title":"注入液体的纹理表面上的湍流减阻:界面动力学的影响","authors":"M. Bernardini, E. J. García Cartagena, A. Mohammadi, A. Smits, S. Leonardi","doi":"10.1080/14685248.2021.1973013","DOIUrl":null,"url":null,"abstract":"Direct numerical simulations of a turbulent channel with liquid infused surfaces made of longitudinal micro-ridges have been performed to study the effect of texture geometry and interface deformation. The flow conditions consider a viscosity ratio , several values of the micro-ridge pitch and two different Weber numbers, We = 0 and We = 50. The performance is analyzed in terms of drag reduction (DR) with respect to an equivalent smooth channel, and the results compared with those available for super-hydrophobic surfaces (SHS). It is found that, due to the relatively high viscosity of the liquid locked in the substrate, the drag reduction offered by LIS is substantially lower than the corresponding SHS. When reported in terms of the streamwise slip length normalized in wall units, the amount of DR obtained by LIS in the ideal case of flat interface collapses on the SHS data. The interface dynamics has a detrimental effect on the performance, that becomes particularly severe when the pitch increases. The degradation of DR is well parametrized by the log-law shift of the velocity profile, that is found to be proportional to the difference between the virtual origin of the mean flow and that experienced by the overlying turbulence.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"22 1","pages":"681 - 712"},"PeriodicalIF":1.5000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent drag reduction over liquid-infused textured surfaces: effect of the interface dynamics\",\"authors\":\"M. Bernardini, E. J. García Cartagena, A. Mohammadi, A. Smits, S. Leonardi\",\"doi\":\"10.1080/14685248.2021.1973013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct numerical simulations of a turbulent channel with liquid infused surfaces made of longitudinal micro-ridges have been performed to study the effect of texture geometry and interface deformation. The flow conditions consider a viscosity ratio , several values of the micro-ridge pitch and two different Weber numbers, We = 0 and We = 50. The performance is analyzed in terms of drag reduction (DR) with respect to an equivalent smooth channel, and the results compared with those available for super-hydrophobic surfaces (SHS). It is found that, due to the relatively high viscosity of the liquid locked in the substrate, the drag reduction offered by LIS is substantially lower than the corresponding SHS. When reported in terms of the streamwise slip length normalized in wall units, the amount of DR obtained by LIS in the ideal case of flat interface collapses on the SHS data. The interface dynamics has a detrimental effect on the performance, that becomes particularly severe when the pitch increases. The degradation of DR is well parametrized by the log-law shift of the velocity profile, that is found to be proportional to the difference between the virtual origin of the mean flow and that experienced by the overlying turbulence.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"22 1\",\"pages\":\"681 - 712\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2021.1973013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1973013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Turbulent drag reduction over liquid-infused textured surfaces: effect of the interface dynamics
Direct numerical simulations of a turbulent channel with liquid infused surfaces made of longitudinal micro-ridges have been performed to study the effect of texture geometry and interface deformation. The flow conditions consider a viscosity ratio , several values of the micro-ridge pitch and two different Weber numbers, We = 0 and We = 50. The performance is analyzed in terms of drag reduction (DR) with respect to an equivalent smooth channel, and the results compared with those available for super-hydrophobic surfaces (SHS). It is found that, due to the relatively high viscosity of the liquid locked in the substrate, the drag reduction offered by LIS is substantially lower than the corresponding SHS. When reported in terms of the streamwise slip length normalized in wall units, the amount of DR obtained by LIS in the ideal case of flat interface collapses on the SHS data. The interface dynamics has a detrimental effect on the performance, that becomes particularly severe when the pitch increases. The degradation of DR is well parametrized by the log-law shift of the velocity profile, that is found to be proportional to the difference between the virtual origin of the mean flow and that experienced by the overlying turbulence.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.