{"title":"诱导Hopf伽罗瓦结构及其局部Hopf伽罗瓦模块","authors":"Daniel Gil-Muñoz, A. Rio","doi":"10.5565/PUBLMAT6612204","DOIUrl":null,"url":null,"abstract":"The regular subgroup determining an induced Hopf Galois structure for a Galois extension $L/K$ is obtained as the direct product of the corresponding regular groups of the inducing subextensions. We describe here the associated Hopf algebra and Hopf action of an induced structure and we prove that they are obtained by tensoring the corresponding inducing objects. In order to deal with their associated orders we develop a general method to compute bases and free generators in terms of matrices coming from representation theory of Hopf modules. In the case of an induced Hopf Galois structure it allows us to decompose the associated order, assuming that inducing subextensions are arithmetically disjoint.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Induced Hopf Galois structures and their local Hopf Galois modules\",\"authors\":\"Daniel Gil-Muñoz, A. Rio\",\"doi\":\"10.5565/PUBLMAT6612204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regular subgroup determining an induced Hopf Galois structure for a Galois extension $L/K$ is obtained as the direct product of the corresponding regular groups of the inducing subextensions. We describe here the associated Hopf algebra and Hopf action of an induced structure and we prove that they are obtained by tensoring the corresponding inducing objects. In order to deal with their associated orders we develop a general method to compute bases and free generators in terms of matrices coming from representation theory of Hopf modules. In the case of an induced Hopf Galois structure it allows us to decompose the associated order, assuming that inducing subextensions are arithmetically disjoint.\",\"PeriodicalId\":54531,\"journal\":{\"name\":\"Publicacions Matematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicacions Matematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6612204\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6612204","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Induced Hopf Galois structures and their local Hopf Galois modules
The regular subgroup determining an induced Hopf Galois structure for a Galois extension $L/K$ is obtained as the direct product of the corresponding regular groups of the inducing subextensions. We describe here the associated Hopf algebra and Hopf action of an induced structure and we prove that they are obtained by tensoring the corresponding inducing objects. In order to deal with their associated orders we develop a general method to compute bases and free generators in terms of matrices coming from representation theory of Hopf modules. In the case of an induced Hopf Galois structure it allows us to decompose the associated order, assuming that inducing subextensions are arithmetically disjoint.
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.