Pascal R Bähr, B. Lang, P. Ueberholz, M. Ady, R. Kersevan
{"title":"用Nvidia RTX GPU开发超高真空度硬件加速仿真内核","authors":"Pascal R Bähr, B. Lang, P. Ueberholz, M. Ady, R. Kersevan","doi":"10.1177/10943420211056654","DOIUrl":null,"url":null,"abstract":"Molflow+ is a Monte Carlo (MC) simulation software for ultra-high vacuum, mainly used to simulate pressure in particle accelerators. In this article, we present and discuss the design choices arising in a new implementation of its ray-tracing–based simulation unit for Nvidia RTX Graphics Processing Units (GPUs). The GPU simulation kernel was designed with Nvidia’s OptiX 7 API to make use of modern hardware-accelerated ray-tracing units, found in recent RTX series GPUs based on the Turing and Ampere architectures. Even with the challenges posed by switching to 32 bit computations, our kernel runs much faster than on comparable CPUs at the expense of a marginal drop in calculation precision.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"141 - 152"},"PeriodicalIF":2.5000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a hardware-accelerated simulation kernel for ultra-high vacuum with Nvidia RTX GPUs\",\"authors\":\"Pascal R Bähr, B. Lang, P. Ueberholz, M. Ady, R. Kersevan\",\"doi\":\"10.1177/10943420211056654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molflow+ is a Monte Carlo (MC) simulation software for ultra-high vacuum, mainly used to simulate pressure in particle accelerators. In this article, we present and discuss the design choices arising in a new implementation of its ray-tracing–based simulation unit for Nvidia RTX Graphics Processing Units (GPUs). The GPU simulation kernel was designed with Nvidia’s OptiX 7 API to make use of modern hardware-accelerated ray-tracing units, found in recent RTX series GPUs based on the Turing and Ampere architectures. Even with the challenges posed by switching to 32 bit computations, our kernel runs much faster than on comparable CPUs at the expense of a marginal drop in calculation precision.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"36 1\",\"pages\":\"141 - 152\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420211056654\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211056654","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Development of a hardware-accelerated simulation kernel for ultra-high vacuum with Nvidia RTX GPUs
Molflow+ is a Monte Carlo (MC) simulation software for ultra-high vacuum, mainly used to simulate pressure in particle accelerators. In this article, we present and discuss the design choices arising in a new implementation of its ray-tracing–based simulation unit for Nvidia RTX Graphics Processing Units (GPUs). The GPU simulation kernel was designed with Nvidia’s OptiX 7 API to make use of modern hardware-accelerated ray-tracing units, found in recent RTX series GPUs based on the Turing and Ampere architectures. Even with the challenges posed by switching to 32 bit computations, our kernel runs much faster than on comparable CPUs at the expense of a marginal drop in calculation precision.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.