{"title":"利用低频调制加速巨纠缠态的产生","authors":"A. Benseghir, A. Messikh, A. Bouketir","doi":"10.55730/1300-0101.2735","DOIUrl":null,"url":null,"abstract":": In this paper, we generalize the shortcuts to adiabacity for the quantum Rabi model by simultaneously modulating its two components, namely, the two-level system and the cavity mode. This will eliminate the counterrotating terms which in turn helps to simulate the Rabi model by the Jaynes-Cummings model without requiring a largely detuned light-matter coupling. We focus on the low-frequency modulations since it is easy to realize them experimentally. The results show that these modulations can significantly shorten the evaluation time, generate much larger entanglement cat states, and robust against imperfection of time evaluation and dissipation.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speeding the generation of giant entangled states using low-frequency modulations\",\"authors\":\"A. Benseghir, A. Messikh, A. Bouketir\",\"doi\":\"10.55730/1300-0101.2735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we generalize the shortcuts to adiabacity for the quantum Rabi model by simultaneously modulating its two components, namely, the two-level system and the cavity mode. This will eliminate the counterrotating terms which in turn helps to simulate the Rabi model by the Jaynes-Cummings model without requiring a largely detuned light-matter coupling. We focus on the low-frequency modulations since it is easy to realize them experimentally. The results show that these modulations can significantly shorten the evaluation time, generate much larger entanglement cat states, and robust against imperfection of time evaluation and dissipation.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0101.2735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0101.2735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Speeding the generation of giant entangled states using low-frequency modulations
: In this paper, we generalize the shortcuts to adiabacity for the quantum Rabi model by simultaneously modulating its two components, namely, the two-level system and the cavity mode. This will eliminate the counterrotating terms which in turn helps to simulate the Rabi model by the Jaynes-Cummings model without requiring a largely detuned light-matter coupling. We focus on the low-frequency modulations since it is easy to realize them experimentally. The results show that these modulations can significantly shorten the evaluation time, generate much larger entanglement cat states, and robust against imperfection of time evaluation and dissipation.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.