偶偶核的形状共存:理论综述

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-08-29 DOI:10.3390/atoms11090117
D. Bonatsos, A. Martinou, Spyridon K. Peroulis, T. Mertzimekis, N. Minkov
{"title":"偶偶核的形状共存:理论综述","authors":"D. Bonatsos, A. Martinou, Spyridon K. Peroulis, T. Mertzimekis, N. Minkov","doi":"10.3390/atoms11090117","DOIUrl":null,"url":null,"abstract":"The last decade has seen a rapid growth in our understanding of the microscopic origins of shape coexistence, assisted by the new data provided by the modern radioactive ion beam facilities built worldwide. Islands of the nuclear chart in which shape coexistence can occur have been identified, and the different microscopic particle–hole excitation mechanisms leading to neutron-induced or proton-induced shape coexistence have been clarified. The relation of shape coexistence to the islands of inversion, appearing in light nuclei, to the new spin-aligned phase appearing in N=Z nuclei, as well as to shape/phase transitions occurring in medium mass and heavy nuclei, has been understood. In the present review, these developments are considered within the shell-model and mean-field approaches, as well as by symmetry methods. In addition, based on systematics of data, as well as on symmetry considerations, quantitative rules are developed, predicting regions in which shape coexistence can appear, as a possible guide for further experimental efforts that can help in improving our understanding of the details of the nucleon–nucleon interaction, as well as of its modifications occurring far from stability.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape Coexistence in Even–Even Nuclei: A Theoretical Overview\",\"authors\":\"D. Bonatsos, A. Martinou, Spyridon K. Peroulis, T. Mertzimekis, N. Minkov\",\"doi\":\"10.3390/atoms11090117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has seen a rapid growth in our understanding of the microscopic origins of shape coexistence, assisted by the new data provided by the modern radioactive ion beam facilities built worldwide. Islands of the nuclear chart in which shape coexistence can occur have been identified, and the different microscopic particle–hole excitation mechanisms leading to neutron-induced or proton-induced shape coexistence have been clarified. The relation of shape coexistence to the islands of inversion, appearing in light nuclei, to the new spin-aligned phase appearing in N=Z nuclei, as well as to shape/phase transitions occurring in medium mass and heavy nuclei, has been understood. In the present review, these developments are considered within the shell-model and mean-field approaches, as well as by symmetry methods. In addition, based on systematics of data, as well as on symmetry considerations, quantitative rules are developed, predicting regions in which shape coexistence can appear, as a possible guide for further experimental efforts that can help in improving our understanding of the details of the nucleon–nucleon interaction, as well as of its modifications occurring far from stability.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11090117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11090117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,在世界各地建造的现代放射性离子束设施提供的新数据的帮助下,我们对形状共存的微观起源的理解迅速增长。已经确定了核图中可以发生形状共存的岛屿,并阐明了导致中子诱导或质子诱导形状共存的不同微观粒子-空穴激发机制。形状共存与轻原子核中出现的反转岛、N=Z原子核中新出现的自旋排列相以及中等质量和重原子核中发生的形状/相变的关系已经被理解。在本综述中,这些发展是在壳模型和平均场方法以及对称方法中考虑的。此外,基于数据的系统性和对称性考虑,制定了定量规则,预测可能出现形状共存的区域,作为进一步实验工作的可能指南,这有助于提高我们对核子-核子相互作用细节的理解,以及对其远未稳定的修改的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape Coexistence in Even–Even Nuclei: A Theoretical Overview
The last decade has seen a rapid growth in our understanding of the microscopic origins of shape coexistence, assisted by the new data provided by the modern radioactive ion beam facilities built worldwide. Islands of the nuclear chart in which shape coexistence can occur have been identified, and the different microscopic particle–hole excitation mechanisms leading to neutron-induced or proton-induced shape coexistence have been clarified. The relation of shape coexistence to the islands of inversion, appearing in light nuclei, to the new spin-aligned phase appearing in N=Z nuclei, as well as to shape/phase transitions occurring in medium mass and heavy nuclei, has been understood. In the present review, these developments are considered within the shell-model and mean-field approaches, as well as by symmetry methods. In addition, based on systematics of data, as well as on symmetry considerations, quantitative rules are developed, predicting regions in which shape coexistence can appear, as a possible guide for further experimental efforts that can help in improving our understanding of the details of the nucleon–nucleon interaction, as well as of its modifications occurring far from stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信