核力量

R. Machleidt
{"title":"核力量","authors":"R. Machleidt","doi":"10.4249/scholarpedia.30710","DOIUrl":null,"url":null,"abstract":"Nuclear forces (also known as nuclear interactions or strong forces) are the forces that act between two or more nucleons. They bind protons and neutrons (“nucleons”) into atomic nuclei. The nuclear force is about 10 millions times stronger than the chemical binding that holds atoms together in molecules. This is the reason why nuclear reactors produce about a million times more energy per kilogram fuel as compared to chemical fuel like oil or coal. However, the range of the nuclear force is short, only a few femtometer (1 fm = 10^{15} m), beyond which it decreases rapidly. That is why, in spite of its enormous strength, we do not feel anything of this force on the atomic scale or in everyday life. The development of a proper theory of nuclear forces has occupied the minds of some of the brightest physicists for seven decades and has been one of the main topics of physics research in the 20th century. The original idea was that the force is caused by the exchange of particles lighter than nucleons known as mesons, and this idea gave rise to the birth of a new subfield of modern physics, namely, (elementary) particle physics. The modern perception of the nuclear force is that it is a residual interaction (similar to the van der Waals force between neutral atoms) of the even stronger force between quarks, which is mediated by the exchange of gluons and holds the quarks together inside a nucleon.","PeriodicalId":74760,"journal":{"name":"Scholarpedia journal","volume":"9 1","pages":"30710"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nuclear Forces\",\"authors\":\"R. Machleidt\",\"doi\":\"10.4249/scholarpedia.30710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear forces (also known as nuclear interactions or strong forces) are the forces that act between two or more nucleons. They bind protons and neutrons (“nucleons”) into atomic nuclei. The nuclear force is about 10 millions times stronger than the chemical binding that holds atoms together in molecules. This is the reason why nuclear reactors produce about a million times more energy per kilogram fuel as compared to chemical fuel like oil or coal. However, the range of the nuclear force is short, only a few femtometer (1 fm = 10^{15} m), beyond which it decreases rapidly. That is why, in spite of its enormous strength, we do not feel anything of this force on the atomic scale or in everyday life. The development of a proper theory of nuclear forces has occupied the minds of some of the brightest physicists for seven decades and has been one of the main topics of physics research in the 20th century. The original idea was that the force is caused by the exchange of particles lighter than nucleons known as mesons, and this idea gave rise to the birth of a new subfield of modern physics, namely, (elementary) particle physics. The modern perception of the nuclear force is that it is a residual interaction (similar to the van der Waals force between neutral atoms) of the even stronger force between quarks, which is mediated by the exchange of gluons and holds the quarks together inside a nucleon.\",\"PeriodicalId\":74760,\"journal\":{\"name\":\"Scholarpedia journal\",\"volume\":\"9 1\",\"pages\":\"30710\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarpedia journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4249/scholarpedia.30710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarpedia journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4249/scholarpedia.30710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核力(也称为核相互作用或强作用力)是作用于两个或多个核子之间的力。它们将质子和中子(“核子”)结合成原子核。核力比将原子结合成分子的化学作用力强1000万倍。这就是为什么核反应堆每公斤燃料产生的能量是石油或煤炭等化学燃料的100万倍。然而,核力的范围很短,只有几个飞米(1fm = 10^{15} m),超过这个范围就会迅速减小。这就是为什么尽管它有巨大的力量,但我们在原子尺度上或在日常生活中却感觉不到任何这种力量。发展正确的核力理论已经占据了一些最聪明的物理学家的思想70年,并已成为20世纪物理学研究的主要课题之一。最初的想法是,力是由比核子轻的粒子(称为介子)的交换引起的,这个想法导致了现代物理学的一个新分支的诞生,即(基本)粒子物理学。现代对核力的看法是,它是夸克之间更强的相互作用的残余相互作用(类似于中性原子之间的范德华力),这种相互作用是通过胶子的交换来调解的,并将夸克聚集在一个核子内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear Forces
Nuclear forces (also known as nuclear interactions or strong forces) are the forces that act between two or more nucleons. They bind protons and neutrons (“nucleons”) into atomic nuclei. The nuclear force is about 10 millions times stronger than the chemical binding that holds atoms together in molecules. This is the reason why nuclear reactors produce about a million times more energy per kilogram fuel as compared to chemical fuel like oil or coal. However, the range of the nuclear force is short, only a few femtometer (1 fm = 10^{15} m), beyond which it decreases rapidly. That is why, in spite of its enormous strength, we do not feel anything of this force on the atomic scale or in everyday life. The development of a proper theory of nuclear forces has occupied the minds of some of the brightest physicists for seven decades and has been one of the main topics of physics research in the 20th century. The original idea was that the force is caused by the exchange of particles lighter than nucleons known as mesons, and this idea gave rise to the birth of a new subfield of modern physics, namely, (elementary) particle physics. The modern perception of the nuclear force is that it is a residual interaction (similar to the van der Waals force between neutral atoms) of the even stronger force between quarks, which is mediated by the exchange of gluons and holds the quarks together inside a nucleon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信