在一些特殊的图上应用(1,2)-pitchfork支配律及其逆

IF 0.4 Q4 MATHEMATICS
M. A. Abdlhusein
{"title":"在一些特殊的图上应用(1,2)-pitchfork支配律及其逆","authors":"M. A. Abdlhusein","doi":"10.5269/bspm.52252","DOIUrl":null,"url":null,"abstract":"Let G be a finite simple and undirected graph without isolated vertices. For any non-negative integers j and k, a subset D of V is called a pitchfork dominating set if every vertex in D dominates at least j and at most k vertices of V - D. A subset D -1 of V - D is an inverse pitchfork dominating set if it is a dominating set. The pitchfork domination number of G, denoted by  pf (G) is a minimum cardinality over all pitchfork dominating sets in G. The inverse pitchfork domination number of G, denoted by pf-1 (G) is a minimum cardinality over all inverse pitchfork dominating sets in G. In this paper, pitchfork dominations and it's inverse are applied when j = 1 and k = 2 on some standard graphs such as: tadpole graph, lollipop graph, lollipop flower graph , daisy graph and Barbell graph.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applying the (1,2)-pitchfork domination and it's inverse on some special graphs\",\"authors\":\"M. A. Abdlhusein\",\"doi\":\"10.5269/bspm.52252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite simple and undirected graph without isolated vertices. For any non-negative integers j and k, a subset D of V is called a pitchfork dominating set if every vertex in D dominates at least j and at most k vertices of V - D. A subset D -1 of V - D is an inverse pitchfork dominating set if it is a dominating set. The pitchfork domination number of G, denoted by  pf (G) is a minimum cardinality over all pitchfork dominating sets in G. The inverse pitchfork domination number of G, denoted by pf-1 (G) is a minimum cardinality over all inverse pitchfork dominating sets in G. In this paper, pitchfork dominations and it's inverse are applied when j = 1 and k = 2 on some standard graphs such as: tadpole graph, lollipop graph, lollipop flower graph , daisy graph and Barbell graph.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设G是一个没有孤立顶点的有限简单无向图。对于任何非负整数j和k,如果D中的每个顶点都支配V-D的至少j个至多k个顶点,则V的子集D称为干草叉支配集。G的干草叉支配数,用pf(G)表示,是G中所有干草叉控制集上的最小基数。G的逆干草叉统治数,用pf-1(G,棒棒糖图、棒棒糖花图、菊花图和Barbell图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying the (1,2)-pitchfork domination and it's inverse on some special graphs
Let G be a finite simple and undirected graph without isolated vertices. For any non-negative integers j and k, a subset D of V is called a pitchfork dominating set if every vertex in D dominates at least j and at most k vertices of V - D. A subset D -1 of V - D is an inverse pitchfork dominating set if it is a dominating set. The pitchfork domination number of G, denoted by  pf (G) is a minimum cardinality over all pitchfork dominating sets in G. The inverse pitchfork domination number of G, denoted by pf-1 (G) is a minimum cardinality over all inverse pitchfork dominating sets in G. In this paper, pitchfork dominations and it's inverse are applied when j = 1 and k = 2 on some standard graphs such as: tadpole graph, lollipop graph, lollipop flower graph , daisy graph and Barbell graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信