GI/GI/1平稳出发过程的大流量限制及其方差函数

Q1 Mathematics
W. Whitt, Wei You
{"title":"GI/GI/1平稳出发过程的大流量限制及其方差函数","authors":"W. Whitt, Wei You","doi":"10.1287/STSY.2018.0011","DOIUrl":null,"url":null,"abstract":"Heavy-traffic limits are established for the stationary departure process from a GI/GI/1 queue and its variance function. The limit process is a function of the Brownian motion limits of the arrival and service processes plus the stationary reflected Brownian motion (RBM) limit of the queue-length process. An explicit expression is given for the variance function, which depends only on the first two moments of the interarrival times and service times plus the previously determined correlation function of canonical (drift −1, diffusion coefficient 1) RBM. The limit for the variance function here is used to show that the approximation for the index of dispersion for counts of the departure process used in our new robust queueing network analyzer is asymptotically correct in the heavy-traffic limit.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/STSY.2018.0011","citationCount":"13","resultStr":"{\"title\":\"Heavy-Traffic Limit of theGI/GI/1 Stationary Departure Process and Its Variance Function\",\"authors\":\"W. Whitt, Wei You\",\"doi\":\"10.1287/STSY.2018.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy-traffic limits are established for the stationary departure process from a GI/GI/1 queue and its variance function. The limit process is a function of the Brownian motion limits of the arrival and service processes plus the stationary reflected Brownian motion (RBM) limit of the queue-length process. An explicit expression is given for the variance function, which depends only on the first two moments of the interarrival times and service times plus the previously determined correlation function of canonical (drift −1, diffusion coefficient 1) RBM. The limit for the variance function here is used to show that the approximation for the index of dispersion for counts of the departure process used in our new robust queueing network analyzer is asymptotically correct in the heavy-traffic limit.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/STSY.2018.0011\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/STSY.2018.0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/STSY.2018.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

摘要

建立了GI/GI/1队列平稳出发过程的大流量限制及其方差函数。极限过程是到达和服务过程的布朗运动极限加上队列长度过程的平稳反射布朗运动(RBM)极限的函数。给出了方差函数的显式表达式,该函数仅取决于到达间隔时间和服务时间的前两个矩加上先前确定的典型(漂移−1,扩散系数1)RBM的相关函数。本文用方差函数的极限来证明,在大流量限制下,我们的新鲁棒排队网络分析器所使用的出发过程计数的离散指数的近似值是渐近正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy-Traffic Limit of theGI/GI/1 Stationary Departure Process and Its Variance Function
Heavy-traffic limits are established for the stationary departure process from a GI/GI/1 queue and its variance function. The limit process is a function of the Brownian motion limits of the arrival and service processes plus the stationary reflected Brownian motion (RBM) limit of the queue-length process. An explicit expression is given for the variance function, which depends only on the first two moments of the interarrival times and service times plus the previously determined correlation function of canonical (drift −1, diffusion coefficient 1) RBM. The limit for the variance function here is used to show that the approximation for the index of dispersion for counts of the departure process used in our new robust queueing network analyzer is asymptotically correct in the heavy-traffic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信