基于右截尾数据的熵和熵估计:一种贝叶斯非参数方法

IF 0.8 Q3 STATISTICS & PROBABILITY
L. Al-Labadi, Muhammad Tahir
{"title":"基于右截尾数据的熵和熵估计:一种贝叶斯非参数方法","authors":"L. Al-Labadi, Muhammad Tahir","doi":"10.1515/mcma-2022-2123","DOIUrl":null,"url":null,"abstract":"Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"319 - 328"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of entropy and extropy based on right censored data: A Bayesian non-parametric approach\",\"authors\":\"L. Al-Labadi, Muhammad Tahir\",\"doi\":\"10.1515/mcma-2022-2123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"319 - 328\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

熵和熵是信息论的核心度量。本文提出了含有可能正确截尾数据的熵和熵的贝叶斯非参数估计。该方法使用了beta-Stacy过程和差分运算符。举例说明了该估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of entropy and extropy based on right censored data: A Bayesian non-parametric approach
Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信