具有少量变量的特殊类型s块

IF 0.58 Q3 Engineering
D. A. Zyubina, N. N. Tokareva
{"title":"具有少量变量的特殊类型s块","authors":"D. A. Zyubina,&nbsp;N. N. Tokareva","doi":"10.1134/S1990478923020229","DOIUrl":null,"url":null,"abstract":"<p> When constructing block ciphers, it is necessary to use vector Boolean functions with\nspecial cryptographic properties as S-blocks for the cipher’s resistance to various types of\ncryptanalysis. In this paper, we investigate the following S-block construction: let\n<span>\\( \\pi \\)</span> be a permutation on\n<span>\\( n \\)</span> elements, let\n<span>\\( \\pi ^i \\)</span> be the\n<span>\\( i \\)</span>-fold application of the permutation\n<span>\\( \\pi \\)</span>, and let\n<span>\\( f \\)</span> be a Boolean function of\n<span>\\( n \\)</span> variables. Define a vector Boolean function\n<span>\\( F_{\\pi }\\colon \\mathbb {Z}_2^n \\to \\mathbb {Z}_2^n \\)</span> as\n<span>\\( F_{\\pi }(x) = (f(x), f(\\pi (x)), \\ldots , f(\\pi _{n-1}(x))) \\)</span>. We study the cryptographic properties of\n<span>\\( F_{\\pi } \\)</span> such as high nonlinearity, balancedness, and low differential\n<span>\\( \\delta \\)</span>-uniformity in the dependence on the properties of\n<span>\\( f \\)</span> and\n<span>\\( \\pi \\)</span> for small\n<span>\\( n \\)</span>. Complete sets of Boolean functions\n<span>\\( f \\)</span> and vector Boolean functions\n<span>\\( F_{\\pi } \\)</span> of few variables with maximum algebraic immunity are also obtained.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"17 2","pages":"451 - 457"},"PeriodicalIF":0.5800,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-Blocks of Special Type with Few Variables\",\"authors\":\"D. A. Zyubina,&nbsp;N. N. Tokareva\",\"doi\":\"10.1134/S1990478923020229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> When constructing block ciphers, it is necessary to use vector Boolean functions with\\nspecial cryptographic properties as S-blocks for the cipher’s resistance to various types of\\ncryptanalysis. In this paper, we investigate the following S-block construction: let\\n<span>\\\\( \\\\pi \\\\)</span> be a permutation on\\n<span>\\\\( n \\\\)</span> elements, let\\n<span>\\\\( \\\\pi ^i \\\\)</span> be the\\n<span>\\\\( i \\\\)</span>-fold application of the permutation\\n<span>\\\\( \\\\pi \\\\)</span>, and let\\n<span>\\\\( f \\\\)</span> be a Boolean function of\\n<span>\\\\( n \\\\)</span> variables. Define a vector Boolean function\\n<span>\\\\( F_{\\\\pi }\\\\colon \\\\mathbb {Z}_2^n \\\\to \\\\mathbb {Z}_2^n \\\\)</span> as\\n<span>\\\\( F_{\\\\pi }(x) = (f(x), f(\\\\pi (x)), \\\\ldots , f(\\\\pi _{n-1}(x))) \\\\)</span>. We study the cryptographic properties of\\n<span>\\\\( F_{\\\\pi } \\\\)</span> such as high nonlinearity, balancedness, and low differential\\n<span>\\\\( \\\\delta \\\\)</span>-uniformity in the dependence on the properties of\\n<span>\\\\( f \\\\)</span> and\\n<span>\\\\( \\\\pi \\\\)</span> for small\\n<span>\\\\( n \\\\)</span>. Complete sets of Boolean functions\\n<span>\\\\( f \\\\)</span> and vector Boolean functions\\n<span>\\\\( F_{\\\\pi } \\\\)</span> of few variables with maximum algebraic immunity are also obtained.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"17 2\",\"pages\":\"451 - 457\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478923020229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478923020229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在构造分组密码时,有必要使用具有特殊密码特性的向量布尔函数作为s块,以使密码能够抵抗各种类型的密码分析。本文研究了以下s块构造:设\( \pi \)为\( n \)元素上的一个置换,设\( \pi ^i \)为该置换\( \pi \)的一个\( i \) -fold应用,设\( f \)为\( n \)变量的布尔函数。定义一个向量布尔函数\( F_{\pi }\colon \mathbb {Z}_2^n \to \mathbb {Z}_2^n \)为\( F_{\pi }(x) = (f(x), f(\pi (x)), \ldots , f(\pi _{n-1}(x))) \)。对于较小的\( n \),我们研究了\( F_{\pi } \)的高非线性、平衡性和低差分\( \delta \) -均匀性等加密特性,这些特性依赖于\( f \)和\( \pi \)的特性。得到了具有最大代数免疫的少变量布尔函数\( f \)和向量布尔函数\( F_{\pi } \)的完备集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S-Blocks of Special Type with Few Variables

When constructing block ciphers, it is necessary to use vector Boolean functions with special cryptographic properties as S-blocks for the cipher’s resistance to various types of cryptanalysis. In this paper, we investigate the following S-block construction: let \( \pi \) be a permutation on \( n \) elements, let \( \pi ^i \) be the \( i \)-fold application of the permutation \( \pi \), and let \( f \) be a Boolean function of \( n \) variables. Define a vector Boolean function \( F_{\pi }\colon \mathbb {Z}_2^n \to \mathbb {Z}_2^n \) as \( F_{\pi }(x) = (f(x), f(\pi (x)), \ldots , f(\pi _{n-1}(x))) \). We study the cryptographic properties of \( F_{\pi } \) such as high nonlinearity, balancedness, and low differential \( \delta \)-uniformity in the dependence on the properties of \( f \) and \( \pi \) for small \( n \). Complete sets of Boolean functions \( f \) and vector Boolean functions \( F_{\pi } \) of few variables with maximum algebraic immunity are also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信