{"title":"将可持续性与第四次工业革命联系起来:考虑技术发展的监测框架","authors":"Florian Siekmann, Holger Schlör, Sandra Venghaus","doi":"10.1186/s13705-023-00405-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In this article, the concept of the Fourth Industrial Revolution and related implications for the measurement of sustainable development are analyzed. Technological innovations can play an important role in countering errant developments of the past and can support the transformation process towards a green economy in pursuit of the Sustainable Development Goals. On the other hand, they pose challenges to the social control of technology and represent a methodical quandary known as the Collingridge dilemma. The core statement of the dilemma is that the implications of new technologies will only be fully visible once they are embedded in socio-economic-ecological systems when the possibilities to control diminish. The main objective of this study is thus to develop a monitoring framework enabling the ex ante assessment of related technological shifts and their implications for sustainable development.</p><h3>Results</h3><p>To approach the resulting difficulties for sustainability monitoring, digitization indicators should be accounted for in the German Sustainable Development Strategy. An enhanced strategy complemented by related Global Competitiveness Index 4.0 indicators, for which the Word Economic Forum assumes a modest link between competitiveness and inequality, illustrates the feasibility of linking research regarding the Fourth Industrial Revolution and sustainable development to measure its social and environmental consequences. The newly developed Sustainable Digital Socio-Economic-Ecological Indicator System categorizes the sustainability indicators into one index covering all Sustainable Development Goals along with four sub-indices emphasizing crucial aspects relevant to navigating a successful transformation. This novel and innovative approach is illustrated using the examples of Germany.</p><h3>Conclusions</h3><p>The Fourth Industrial Revolution is fundamentally driven by introducing renewable energy resources as a new energy regime. However, the effects extend beyond energy and necessitate comprehensive measurement frameworks for assessing sustainable development implications. This work contributes by analyzing the related impact on sustainable development and providing decision-makers with new insights for early recognition. Preliminary results for Germany expose a discrepancy between the status quo and the desired pathway, indicating emerging effects of the Fourth Industrial Revolution on inequality, employment, and education. While none of the sectors are sustainable, the sub-index analysis highlights distinct disparities among economic, social, and ecological sectors.</p></div>","PeriodicalId":539,"journal":{"name":"Energy, Sustainability and Society","volume":"13 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-023-00405-4","citationCount":"0","resultStr":"{\"title\":\"Linking sustainability and the Fourth Industrial Revolution: a monitoring framework accounting for technological development\",\"authors\":\"Florian Siekmann, Holger Schlör, Sandra Venghaus\",\"doi\":\"10.1186/s13705-023-00405-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>In this article, the concept of the Fourth Industrial Revolution and related implications for the measurement of sustainable development are analyzed. Technological innovations can play an important role in countering errant developments of the past and can support the transformation process towards a green economy in pursuit of the Sustainable Development Goals. On the other hand, they pose challenges to the social control of technology and represent a methodical quandary known as the Collingridge dilemma. The core statement of the dilemma is that the implications of new technologies will only be fully visible once they are embedded in socio-economic-ecological systems when the possibilities to control diminish. The main objective of this study is thus to develop a monitoring framework enabling the ex ante assessment of related technological shifts and their implications for sustainable development.</p><h3>Results</h3><p>To approach the resulting difficulties for sustainability monitoring, digitization indicators should be accounted for in the German Sustainable Development Strategy. An enhanced strategy complemented by related Global Competitiveness Index 4.0 indicators, for which the Word Economic Forum assumes a modest link between competitiveness and inequality, illustrates the feasibility of linking research regarding the Fourth Industrial Revolution and sustainable development to measure its social and environmental consequences. The newly developed Sustainable Digital Socio-Economic-Ecological Indicator System categorizes the sustainability indicators into one index covering all Sustainable Development Goals along with four sub-indices emphasizing crucial aspects relevant to navigating a successful transformation. This novel and innovative approach is illustrated using the examples of Germany.</p><h3>Conclusions</h3><p>The Fourth Industrial Revolution is fundamentally driven by introducing renewable energy resources as a new energy regime. However, the effects extend beyond energy and necessitate comprehensive measurement frameworks for assessing sustainable development implications. This work contributes by analyzing the related impact on sustainable development and providing decision-makers with new insights for early recognition. Preliminary results for Germany expose a discrepancy between the status quo and the desired pathway, indicating emerging effects of the Fourth Industrial Revolution on inequality, employment, and education. While none of the sectors are sustainable, the sub-index analysis highlights distinct disparities among economic, social, and ecological sectors.</p></div>\",\"PeriodicalId\":539,\"journal\":{\"name\":\"Energy, Sustainability and Society\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-023-00405-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy, Sustainability and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13705-023-00405-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy, Sustainability and Society","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13705-023-00405-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Linking sustainability and the Fourth Industrial Revolution: a monitoring framework accounting for technological development
Background
In this article, the concept of the Fourth Industrial Revolution and related implications for the measurement of sustainable development are analyzed. Technological innovations can play an important role in countering errant developments of the past and can support the transformation process towards a green economy in pursuit of the Sustainable Development Goals. On the other hand, they pose challenges to the social control of technology and represent a methodical quandary known as the Collingridge dilemma. The core statement of the dilemma is that the implications of new technologies will only be fully visible once they are embedded in socio-economic-ecological systems when the possibilities to control diminish. The main objective of this study is thus to develop a monitoring framework enabling the ex ante assessment of related technological shifts and their implications for sustainable development.
Results
To approach the resulting difficulties for sustainability monitoring, digitization indicators should be accounted for in the German Sustainable Development Strategy. An enhanced strategy complemented by related Global Competitiveness Index 4.0 indicators, for which the Word Economic Forum assumes a modest link between competitiveness and inequality, illustrates the feasibility of linking research regarding the Fourth Industrial Revolution and sustainable development to measure its social and environmental consequences. The newly developed Sustainable Digital Socio-Economic-Ecological Indicator System categorizes the sustainability indicators into one index covering all Sustainable Development Goals along with four sub-indices emphasizing crucial aspects relevant to navigating a successful transformation. This novel and innovative approach is illustrated using the examples of Germany.
Conclusions
The Fourth Industrial Revolution is fundamentally driven by introducing renewable energy resources as a new energy regime. However, the effects extend beyond energy and necessitate comprehensive measurement frameworks for assessing sustainable development implications. This work contributes by analyzing the related impact on sustainable development and providing decision-makers with new insights for early recognition. Preliminary results for Germany expose a discrepancy between the status quo and the desired pathway, indicating emerging effects of the Fourth Industrial Revolution on inequality, employment, and education. While none of the sectors are sustainable, the sub-index analysis highlights distinct disparities among economic, social, and ecological sectors.
期刊介绍:
Energy, Sustainability and Society is a peer-reviewed open access journal published under the brand SpringerOpen. It covers topics ranging from scientific research to innovative approaches for technology implementation to analysis of economic, social and environmental impacts of sustainable energy systems.