考虑复杂渗流机制的页岩气压裂井动态模型

IF 1.5 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Yan Xun, Sun Jing, Liu De-hua
{"title":"考虑复杂渗流机制的页岩气压裂井动态模型","authors":"Yan Xun, Sun Jing, Liu De-hua","doi":"10.1080/12269328.2020.1713912","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hydraulic fracture is a key technology for high-efficiency development of shale gas, and the flow mechanism of fractured well with Stimulated Reservoir Volume (SRV) is complex in shale gas. In this paper, an apparent permeability model is proposed, which can not only reflect the multi-scale flow characteristics in shale gas but also characterize the variation of permeability with effective stress. In addition, a composite model for a fractured well with SRV is established, which comprises multiscale, geomechanics and adsorption phenomenon. The object of this paper is to investigate some important impacts on a fractured well with SRV. The results reveal that the cumulative gas production will decrease sharply when the shale gas reservoir stress-sensitive coefficient increases. Additionally, the gas production rate and cumulative gas production will increase with the increase of SRV permeability. And, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity, the larger Langmuir volume, the richer adsorption gas content in shale gas. And, more adsorbed gas will be exploited into free gas, which slows down the production decline of gas wells. The production of gas well will increase with the increase of perforation thickness of gas reservoir.","PeriodicalId":12714,"journal":{"name":"Geosystem Engineering","volume":"23 1","pages":"174 - 182"},"PeriodicalIF":1.5000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/12269328.2020.1713912","citationCount":"1","resultStr":"{\"title\":\"A Model For Fractured Well Performance Coupled WithComplex Seepage Mechanism in Shale Gas\",\"authors\":\"Yan Xun, Sun Jing, Liu De-hua\",\"doi\":\"10.1080/12269328.2020.1713912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Hydraulic fracture is a key technology for high-efficiency development of shale gas, and the flow mechanism of fractured well with Stimulated Reservoir Volume (SRV) is complex in shale gas. In this paper, an apparent permeability model is proposed, which can not only reflect the multi-scale flow characteristics in shale gas but also characterize the variation of permeability with effective stress. In addition, a composite model for a fractured well with SRV is established, which comprises multiscale, geomechanics and adsorption phenomenon. The object of this paper is to investigate some important impacts on a fractured well with SRV. The results reveal that the cumulative gas production will decrease sharply when the shale gas reservoir stress-sensitive coefficient increases. Additionally, the gas production rate and cumulative gas production will increase with the increase of SRV permeability. And, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity, the larger Langmuir volume, the richer adsorption gas content in shale gas. And, more adsorbed gas will be exploited into free gas, which slows down the production decline of gas wells. The production of gas well will increase with the increase of perforation thickness of gas reservoir.\",\"PeriodicalId\":12714,\"journal\":{\"name\":\"Geosystem Engineering\",\"volume\":\"23 1\",\"pages\":\"174 - 182\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/12269328.2020.1713912\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystem Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/12269328.2020.1713912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystem Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12269328.2020.1713912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

水力压裂是页岩气高效开发的关键技术,页岩气增产压裂井渗流机理复杂。提出了一种既能反映页岩气多尺度流动特征又能表征渗透率随有效应力变化的表观渗透率模型。此外,建立了包括多尺度、地质力学和吸附现象在内的压裂井与SRV的复合模型。本文的目的是研究SRV对压裂井的一些重要影响。结果表明,页岩气储层应力敏感系数增大,累积产气量急剧下降。此外,随着SRV渗透率的增加,产气量和累计产气量也会增加。吸附现象对页岩气渗流和吸附能力有影响,Langmuir体积越大,页岩气中吸附气含量越高。同时,更多的吸附气将被开采为游离气,从而减缓了气井产量的下降。气井产量随着气藏射孔厚度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model For Fractured Well Performance Coupled WithComplex Seepage Mechanism in Shale Gas
ABSTRACT Hydraulic fracture is a key technology for high-efficiency development of shale gas, and the flow mechanism of fractured well with Stimulated Reservoir Volume (SRV) is complex in shale gas. In this paper, an apparent permeability model is proposed, which can not only reflect the multi-scale flow characteristics in shale gas but also characterize the variation of permeability with effective stress. In addition, a composite model for a fractured well with SRV is established, which comprises multiscale, geomechanics and adsorption phenomenon. The object of this paper is to investigate some important impacts on a fractured well with SRV. The results reveal that the cumulative gas production will decrease sharply when the shale gas reservoir stress-sensitive coefficient increases. Additionally, the gas production rate and cumulative gas production will increase with the increase of SRV permeability. And, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity, the larger Langmuir volume, the richer adsorption gas content in shale gas. And, more adsorbed gas will be exploited into free gas, which slows down the production decline of gas wells. The production of gas well will increase with the increase of perforation thickness of gas reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosystem Engineering
Geosystem Engineering GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信