作为大数据的数字档案

IF 1.4 3区 社会学 Q3 DEMOGRAPHY
L. Martinez-Uribe
{"title":"作为大数据的数字档案","authors":"L. Martinez-Uribe","doi":"10.1080/08898480.2017.1418116","DOIUrl":null,"url":null,"abstract":"ABSTRACT Digital archives contribute to Big data. Combining social network analysis, coincidence analysis, data reduction, and visual analytics leads to better characterize topics over time, publishers’ main themes and best authors of all times, according to the British newspaper The Guardian and from the 3 million records of the British National Bibliography.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"26 1","pages":"69 - 79"},"PeriodicalIF":1.4000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2017.1418116","citationCount":"2","resultStr":"{\"title\":\"Digital archives as Big data\",\"authors\":\"L. Martinez-Uribe\",\"doi\":\"10.1080/08898480.2017.1418116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Digital archives contribute to Big data. Combining social network analysis, coincidence analysis, data reduction, and visual analytics leads to better characterize topics over time, publishers’ main themes and best authors of all times, according to the British newspaper The Guardian and from the 3 million records of the British National Bibliography.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"26 1\",\"pages\":\"69 - 79\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2017.1418116\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2017.1418116\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2017.1418116","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

摘要数字档案为大数据做出了贡献。根据英国《卫报》和英国国家书目的300万条记录,将社交网络分析、巧合分析、数据缩减和视觉分析相结合,可以更好地描述一段时间以来的主题、出版商的主要主题和有史以来的最佳作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital archives as Big data
ABSTRACT Digital archives contribute to Big data. Combining social network analysis, coincidence analysis, data reduction, and visual analytics leads to better characterize topics over time, publishers’ main themes and best authors of all times, according to the British newspaper The Guardian and from the 3 million records of the British National Bibliography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信