二阶常微分方程的模拟退火解

A. Bilesanmi, A. Wusu, A. Olutimo
{"title":"二阶常微分方程的模拟退火解","authors":"A. Bilesanmi, A. Wusu, A. Olutimo","doi":"10.4236/OJOP.2019.81003","DOIUrl":null,"url":null,"abstract":"In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.","PeriodicalId":66387,"journal":{"name":"最优化(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of Second-Order Ordinary Differential Equations via Simulated Annealing\",\"authors\":\"A. Bilesanmi, A. Wusu, A. Olutimo\",\"doi\":\"10.4236/OJOP.2019.81003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.\",\"PeriodicalId\":66387,\"journal\":{\"name\":\"最优化(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"最优化(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJOP.2019.81003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"最优化(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJOP.2019.81003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将二阶初值问题的近似解转化为一个优化问题来研究。假定解可以用多项式近似。然后利用模拟退火技术对多项式的系数进行优化。数值算例表明,该方法与现有方法相比具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Second-Order Ordinary Differential Equations via Simulated Annealing
In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信