利用强化学习优化药物使用治疗选择

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Matt Baucum, Anahita Khojandi, Carole R. Myers, Lawrence M. Kessler
{"title":"利用强化学习优化药物使用治疗选择","authors":"Matt Baucum, Anahita Khojandi, Carole R. Myers, Lawrence M. Kessler","doi":"10.1145/3563778","DOIUrl":null,"url":null,"abstract":"Substance use disorder (SUD) exacts a substantial economic and social cost in the United States, and it is crucial for SUD treatment providers to match patients with feasible, effective, and affordable treatment plans. The availability of large SUD patient datasets allows for machine learning techniques to predict patient-level SUD outcomes, yet there has been almost no research on whether machine learning can be used to optimize or personalize which treatment plans SUD patients receive. We use contextual bandits (a reinforcement learning technique) to optimally map patients to SUD treatment plans, based on dozens of patient-level and geographic covariates. We also use near-optimal policies to incorporate treatments’ time-intensiveness and cost into our recommendations, to aid treatment providers and policymakers in allocating treatment resources. Our personalized treatment recommendation policies are estimated to yield higher remission rates than observed in our original dataset, and they suggest clinical insights to inform future research on data-driven SUD treatment matching.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":"14 1","pages":"1 - 30"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Substance Use Treatment Selection Using Reinforcement Learning\",\"authors\":\"Matt Baucum, Anahita Khojandi, Carole R. Myers, Lawrence M. Kessler\",\"doi\":\"10.1145/3563778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substance use disorder (SUD) exacts a substantial economic and social cost in the United States, and it is crucial for SUD treatment providers to match patients with feasible, effective, and affordable treatment plans. The availability of large SUD patient datasets allows for machine learning techniques to predict patient-level SUD outcomes, yet there has been almost no research on whether machine learning can be used to optimize or personalize which treatment plans SUD patients receive. We use contextual bandits (a reinforcement learning technique) to optimally map patients to SUD treatment plans, based on dozens of patient-level and geographic covariates. We also use near-optimal policies to incorporate treatments’ time-intensiveness and cost into our recommendations, to aid treatment providers and policymakers in allocating treatment resources. Our personalized treatment recommendation policies are estimated to yield higher remission rates than observed in our original dataset, and they suggest clinical insights to inform future research on data-driven SUD treatment matching.\",\"PeriodicalId\":45274,\"journal\":{\"name\":\"ACM Transactions on Management Information Systems\",\"volume\":\"14 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Management Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在美国,物质使用障碍(SUD)造成了巨大的经济和社会成本,对于SUD治疗提供者来说,为患者提供可行、有效和负担得起的治疗方案至关重要。大型SUD患者数据集的可用性允许机器学习技术预测患者层面的SUD结果,但关于机器学习是否可以用于优化或个性化SUD患者接受的治疗方案的研究几乎没有。基于数十个患者水平和地理协变量,我们使用上下文强盗(一种强化学习技术)来优化患者到SUD治疗计划的映射。我们还使用近乎最优的政策,将治疗的时间密集性和成本纳入我们的建议,以帮助治疗提供者和政策制定者分配治疗资源。我们的个性化治疗推荐政策估计比原始数据集中观察到的缓解率更高,并且它们为数据驱动的SUD治疗匹配的未来研究提供了临床见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Substance Use Treatment Selection Using Reinforcement Learning
Substance use disorder (SUD) exacts a substantial economic and social cost in the United States, and it is crucial for SUD treatment providers to match patients with feasible, effective, and affordable treatment plans. The availability of large SUD patient datasets allows for machine learning techniques to predict patient-level SUD outcomes, yet there has been almost no research on whether machine learning can be used to optimize or personalize which treatment plans SUD patients receive. We use contextual bandits (a reinforcement learning technique) to optimally map patients to SUD treatment plans, based on dozens of patient-level and geographic covariates. We also use near-optimal policies to incorporate treatments’ time-intensiveness and cost into our recommendations, to aid treatment providers and policymakers in allocating treatment resources. Our personalized treatment recommendation policies are estimated to yield higher remission rates than observed in our original dataset, and they suggest clinical insights to inform future research on data-driven SUD treatment matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.30
自引率
20.00%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信