乘法格中的$\mathfrak{X}$-元素-环中$J$-理想、$n$-理想和$r$-理想的推广

IF 0.5 Q3 MATHEMATICS
Sachin Sarode, Vinayak Joshi
{"title":"乘法格中的$\\mathfrak{X}$-元素-环中$J$-理想、$n$-理想和$r$-理想的推广","authors":"Sachin Sarode, Vinayak Joshi","doi":"10.24330/ieja.1102289","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a concept of X-element with respect to an M -closed set X in multiplicative lattices and study properties of X-elements. For a particular M -closed subset X, we define the concept of r-element, n-element and J-element. These elements generalize the notion of r-ideals, n-ideals and J-ideals of a commutative ring with unity to multiplicative lattices. In fact, we prove that an ideal I of a commutative ring R with unity is a n-ideal (J-ideal) of R if and only if it is an n-element (J-element) of Id(R), the ideal lattice of R.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathfrak{X}$-elements in multiplicative lattices - A generalization of $J$-ideals, $n$-ideals and $r$-ideals in rings\",\"authors\":\"Sachin Sarode, Vinayak Joshi\",\"doi\":\"10.24330/ieja.1102289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a concept of X-element with respect to an M -closed set X in multiplicative lattices and study properties of X-elements. For a particular M -closed subset X, we define the concept of r-element, n-element and J-element. These elements generalize the notion of r-ideals, n-ideals and J-ideals of a commutative ring with unity to multiplicative lattices. In fact, we prove that an ideal I of a commutative ring R with unity is a n-ideal (J-ideal) of R if and only if it is an n-element (J-element) of Id(R), the ideal lattice of R.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1102289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1102289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在乘性格中,我们引入了关于M-闭集X的X元素的概念,并研究了X元素的性质。对于一个特定的M-闭子集X,我们定义了r元素、n元素和J元素的概念。这些元素将具有单位性的交换环的r理想、n理想和J理想的概念推广到乘法格。事实上,我们证明了具有单位的交换环R的理想I是R的n-理想(J-理想)当且仅当它是Id(R)的n-元素(J-元素),R的理想格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathfrak{X}$-elements in multiplicative lattices - A generalization of $J$-ideals, $n$-ideals and $r$-ideals in rings
In this paper, we introduce a concept of X-element with respect to an M -closed set X in multiplicative lattices and study properties of X-elements. For a particular M -closed subset X, we define the concept of r-element, n-element and J-element. These elements generalize the notion of r-ideals, n-ideals and J-ideals of a commutative ring with unity to multiplicative lattices. In fact, we prove that an ideal I of a commutative ring R with unity is a n-ideal (J-ideal) of R if and only if it is an n-element (J-element) of Id(R), the ideal lattice of R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信