用于分析非均相电催化剂的结构-性能相关性

IF 6.1 Q2 CHEMISTRY, PHYSICAL
E. Alsaç, Nataraju Bodappa, Alexander W. H. Whittingham, Yutong Liu, Adriana C. de Lazzari, Rodney D. L. Smith
{"title":"用于分析非均相电催化剂的结构-性能相关性","authors":"E. Alsaç, Nataraju Bodappa, Alexander W. H. Whittingham, Yutong Liu, Adriana C. de Lazzari, Rodney D. L. Smith","doi":"10.1063/5.0058704","DOIUrl":null,"url":null,"abstract":"Heterogeneous electrocatalytic reactions are believed to occur at a minority of coordination sites through a series of elementary reactions that are balanced by minor equilibria. These features mask changes in reaction sites, making it challenging to directly identify and analyze reaction sites or intermediates while studying reaction mechanisms. Systematic perturbations of a reaction system often yield systematic changes in material properties and behavior. Correlations between measurable changes in parameters describing the structure and behavior, therefore, serve as powerful tools for distinguishing active reaction sites. This review explores structure–property correlations that have advanced understanding of behavior and reaction mechanisms in heterogeneous electrocatalysis. It covers correlations that have advanced understanding of the contributions of the local reaction environment to reactivity, of structure and bonding within solid-state materials, of geometric or mechanical strain in bonding environments, and of the impact of structural defects. Such correlations can assist researchers in developing next generation catalysts by establishing catalyst design principles and gaining control over reaction mechanisms.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Structure–property correlations for analysis of heterogeneous electrocatalysts\",\"authors\":\"E. Alsaç, Nataraju Bodappa, Alexander W. H. Whittingham, Yutong Liu, Adriana C. de Lazzari, Rodney D. L. Smith\",\"doi\":\"10.1063/5.0058704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous electrocatalytic reactions are believed to occur at a minority of coordination sites through a series of elementary reactions that are balanced by minor equilibria. These features mask changes in reaction sites, making it challenging to directly identify and analyze reaction sites or intermediates while studying reaction mechanisms. Systematic perturbations of a reaction system often yield systematic changes in material properties and behavior. Correlations between measurable changes in parameters describing the structure and behavior, therefore, serve as powerful tools for distinguishing active reaction sites. This review explores structure–property correlations that have advanced understanding of behavior and reaction mechanisms in heterogeneous electrocatalysis. It covers correlations that have advanced understanding of the contributions of the local reaction environment to reactivity, of structure and bonding within solid-state materials, of geometric or mechanical strain in bonding environments, and of the impact of structural defects. Such correlations can assist researchers in developing next generation catalysts by establishing catalyst design principles and gaining control over reaction mechanisms.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0058704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0058704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

摘要

多相电催化反应被认为是通过一系列由小平衡平衡的基本反应发生在少数配位位点。这些特征掩盖了反应位点的变化,使得在研究反应机理时直接识别和分析反应位点或中间体具有挑战性。反应系统的系统扰动通常会导致材料性质和行为的系统变化。因此,描述结构和行为的参数的可测量变化之间的相关性是区分活性反应位点的有力工具。这篇综述探讨了结构-性质相关性,这些相关性对多相电催化的行为和反应机制有了深入的理解。它涵盖了对局部反应环境对反应性的贡献、固态材料内的结构和键合、键合环境中的几何或机械应变以及结构缺陷的影响有深入理解的相关性。这种相关性可以通过建立催化剂设计原则和控制反应机制来帮助研究人员开发下一代催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure–property correlations for analysis of heterogeneous electrocatalysts
Heterogeneous electrocatalytic reactions are believed to occur at a minority of coordination sites through a series of elementary reactions that are balanced by minor equilibria. These features mask changes in reaction sites, making it challenging to directly identify and analyze reaction sites or intermediates while studying reaction mechanisms. Systematic perturbations of a reaction system often yield systematic changes in material properties and behavior. Correlations between measurable changes in parameters describing the structure and behavior, therefore, serve as powerful tools for distinguishing active reaction sites. This review explores structure–property correlations that have advanced understanding of behavior and reaction mechanisms in heterogeneous electrocatalysis. It covers correlations that have advanced understanding of the contributions of the local reaction environment to reactivity, of structure and bonding within solid-state materials, of geometric or mechanical strain in bonding environments, and of the impact of structural defects. Such correlations can assist researchers in developing next generation catalysts by establishing catalyst design principles and gaining control over reaction mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信