聚电解质凝聚体线性粘弹性中的低频弹性平台

IF 3 2区 工程技术 Q2 MECHANICS
Huiling Li, Y. Liu, A. Shetty, R. Larson
{"title":"聚电解质凝聚体线性粘弹性中的低频弹性平台","authors":"Huiling Li, Y. Liu, A. Shetty, R. Larson","doi":"10.1122/8.0000488","DOIUrl":null,"url":null,"abstract":"A thorough study is made of the dependences on salt concentration and polymer chain lengths of the low-frequency plateau of coacervates of poly (diallyl dimethyl ammonium chloride), PDADMAC, and poly (sodium 4-styrenesulfonate), PSS. The reliability and reproducibility of these measurements are carefully checked by determining the frequency-dependent stress limits of the rheometer through the use of reference fluids and by repeat experiments with coacervates. Long-time frequency sweeps show that coacervates with less salt are more repeatable than those with higher salt. A low-frequency plateau reliably appears only below a critical salt concentration, and the magnitude of the plateau depends strongly on salt concentration and chain lengths of both polycation and polyanion. It is only present for the molecular weight of the polycation, PDADMAC, higher than 100 kDa, but the magnitude of the plateau is more strongly influenced by the chain length of the polyanion, PSS. Possible causes of the low-frequency plateau are discussed.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-frequency elastic plateau in linear viscoelasticity of polyelectrolyte coacervates\",\"authors\":\"Huiling Li, Y. Liu, A. Shetty, R. Larson\",\"doi\":\"10.1122/8.0000488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thorough study is made of the dependences on salt concentration and polymer chain lengths of the low-frequency plateau of coacervates of poly (diallyl dimethyl ammonium chloride), PDADMAC, and poly (sodium 4-styrenesulfonate), PSS. The reliability and reproducibility of these measurements are carefully checked by determining the frequency-dependent stress limits of the rheometer through the use of reference fluids and by repeat experiments with coacervates. Long-time frequency sweeps show that coacervates with less salt are more repeatable than those with higher salt. A low-frequency plateau reliably appears only below a critical salt concentration, and the magnitude of the plateau depends strongly on salt concentration and chain lengths of both polycation and polyanion. It is only present for the molecular weight of the polycation, PDADMAC, higher than 100 kDa, but the magnitude of the plateau is more strongly influenced by the chain length of the polyanion, PSS. Possible causes of the low-frequency plateau are discussed.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000488\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000488","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

深入研究了聚二烯丙基二甲基氯化铵(PDADMAC)和聚4-苯乙烯磺酸钠(PSS)凝聚层低频平台对盐浓度和聚合物链长的依赖性。通过使用参考流体和用凝聚层重复实验来确定流变仪的频率相关应力极限,仔细检查这些测量的可靠性和再现性。长时间频率扫描表明,含盐量较少的凝聚层比含盐量较高的凝聚层更具可重复性。低频平台可靠地仅出现在临界盐浓度以下,并且平台的大小在很大程度上取决于盐浓度和聚阳离子和聚阴离子的链长。它只存在于聚阳离子PDADMAC的分子量高于100时 kDa,但平台的大小更强烈地受到聚阴离子PSS的链长的影响。讨论了低频平台的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-frequency elastic plateau in linear viscoelasticity of polyelectrolyte coacervates
A thorough study is made of the dependences on salt concentration and polymer chain lengths of the low-frequency plateau of coacervates of poly (diallyl dimethyl ammonium chloride), PDADMAC, and poly (sodium 4-styrenesulfonate), PSS. The reliability and reproducibility of these measurements are carefully checked by determining the frequency-dependent stress limits of the rheometer through the use of reference fluids and by repeat experiments with coacervates. Long-time frequency sweeps show that coacervates with less salt are more repeatable than those with higher salt. A low-frequency plateau reliably appears only below a critical salt concentration, and the magnitude of the plateau depends strongly on salt concentration and chain lengths of both polycation and polyanion. It is only present for the molecular weight of the polycation, PDADMAC, higher than 100 kDa, but the magnitude of the plateau is more strongly influenced by the chain length of the polyanion, PSS. Possible causes of the low-frequency plateau are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信