广义白嘴鸦一元群的Jucys-Murphy元和Grothendieck群

IF 0.6 2区 数学 Q3 MATHEMATICS
V. Mazorchuk, S. Srivastava
{"title":"广义白嘴鸦一元群的Jucys-Murphy元和Grothendieck群","authors":"V. Mazorchuk, S. Srivastava","doi":"10.4171/JCA/65","DOIUrl":null,"url":null,"abstract":". We consider a tower of generalized rook monoid algebras over the field C of complex numbers and observe that the Bratteli diagram associated to this tower is a simple graph. We construct simple modules and describe Jucys–Murphy elements for generalized rook monoid algebras. Over an algebraically closed field k of positive characteristic p , utilizing Jucys–Murphy elements of rook monoid algebras, for 0 ≤ i ≤ p − 1 we define the corresponding i -restriction and i -induction functors along with two extra functors. On the direct sum G C of the Grothendieck groups of module categories over rook monoid algebras over k , these functors induce an action of the tensor product of the universal enveloping algebra U ( b sl p ( C )) and the monoid algebra C [ B ] of the bicyclic monoid B . Furthermore, we prove that G C is isomorphic to the tensor product of the basic representation of U ( b sl p ( C )) and the unique infinite-dimensional simple module over C [ B ], and also exhibit that G C is a bialgebra. Under some natural restrictions on the characteristic of k , we outline the corresponding result for generalized rook monoids.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Jucys–Murphy elements and Grothendieck groups for generalized rook monoids\",\"authors\":\"V. Mazorchuk, S. Srivastava\",\"doi\":\"10.4171/JCA/65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider a tower of generalized rook monoid algebras over the field C of complex numbers and observe that the Bratteli diagram associated to this tower is a simple graph. We construct simple modules and describe Jucys–Murphy elements for generalized rook monoid algebras. Over an algebraically closed field k of positive characteristic p , utilizing Jucys–Murphy elements of rook monoid algebras, for 0 ≤ i ≤ p − 1 we define the corresponding i -restriction and i -induction functors along with two extra functors. On the direct sum G C of the Grothendieck groups of module categories over rook monoid algebras over k , these functors induce an action of the tensor product of the universal enveloping algebra U ( b sl p ( C )) and the monoid algebra C [ B ] of the bicyclic monoid B . Furthermore, we prove that G C is isomorphic to the tensor product of the basic representation of U ( b sl p ( C )) and the unique infinite-dimensional simple module over C [ B ], and also exhibit that G C is a bialgebra. Under some natural restrictions on the characteristic of k , we outline the corresponding result for generalized rook monoids.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/65\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/65","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

.我们考虑复数域C上的广义rook-monoid代数的一个塔,并观察到与该塔相关的Bratteli图是一个简单图。我们构造了广义rook-monoid代数的简单模并描述了Jucys–Murphy元素。在正特征p的代数闭域k上,利用rook单胚代数的Jucys–Murphy元素,对于0≤i≤p−1,我们定义了相应的i-限制和i-诱导函子以及两个额外的函子。在k上的rook-monoid代数上模范畴的Grothendieck群的直和GC上,这些函子引起了泛包络代数U(b sl p(C))和双环monoid b的monoid代数学C[b]的张量积的作用。此外,我们证明了GC同构于U(b sl p(C))的基本表示与C[b]上的唯一有限维简单模的张量积,并证明了GC是一个双代数。在对k的性质的一些自然限制下,我们给出了广义rook-monoid的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jucys–Murphy elements and Grothendieck groups for generalized rook monoids
. We consider a tower of generalized rook monoid algebras over the field C of complex numbers and observe that the Bratteli diagram associated to this tower is a simple graph. We construct simple modules and describe Jucys–Murphy elements for generalized rook monoid algebras. Over an algebraically closed field k of positive characteristic p , utilizing Jucys–Murphy elements of rook monoid algebras, for 0 ≤ i ≤ p − 1 we define the corresponding i -restriction and i -induction functors along with two extra functors. On the direct sum G C of the Grothendieck groups of module categories over rook monoid algebras over k , these functors induce an action of the tensor product of the universal enveloping algebra U ( b sl p ( C )) and the monoid algebra C [ B ] of the bicyclic monoid B . Furthermore, we prove that G C is isomorphic to the tensor product of the basic representation of U ( b sl p ( C )) and the unique infinite-dimensional simple module over C [ B ], and also exhibit that G C is a bialgebra. Under some natural restrictions on the characteristic of k , we outline the corresponding result for generalized rook monoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信