{"title":"求解Cauchy–Stefan反问题的一种均匀化方法,用于恢复非光滑移动边界、热通量和初始值","authors":"Chein-Shan Liu, Jiang-Ren Chang","doi":"10.1080/17415977.2021.1949591","DOIUrl":null,"url":null,"abstract":"In the paper, we solve two Stefan problems. The first problem recovers an unknown moving boundary by specifying the Cauchy boundary conditions on a fixed left-end. The second problem finds a time-dependent heat flux on the left-end, such that a desired moving boundary can be achieved. Then, we solve an inverse Cauchy-Stefan problem, using the over-specified Cauchy boundary conditions on a given moving boundary to recover the solution. Resorting on a homogenization function method, we recast these problems into the ones having homogeneous boundary and initial conditions. Consequently, the approximate solution is obtained by solving a linear system obtained from the collocation method in a reduced domain. For the first Stefan problem the moving boundary can be determined accurately, after solving a nonlinear equation at each discretized time. For the second Stefan problem, we can obtain the required boundary heat flux without needing of iteration. Numerical examples, including non-smooth ones, confirm that the novel methods are simple and robust against large noise. Moreover, the Stefan and inverse Cauchy-Stefan problems are solved without initial conditions.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2772 - 2803"},"PeriodicalIF":1.1000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1949591","citationCount":"0","resultStr":"{\"title\":\"A homogenization method to solve inverse Cauchy–Stefan problems for recovering non-smooth moving boundary, heat flux and initial value\",\"authors\":\"Chein-Shan Liu, Jiang-Ren Chang\",\"doi\":\"10.1080/17415977.2021.1949591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we solve two Stefan problems. The first problem recovers an unknown moving boundary by specifying the Cauchy boundary conditions on a fixed left-end. The second problem finds a time-dependent heat flux on the left-end, such that a desired moving boundary can be achieved. Then, we solve an inverse Cauchy-Stefan problem, using the over-specified Cauchy boundary conditions on a given moving boundary to recover the solution. Resorting on a homogenization function method, we recast these problems into the ones having homogeneous boundary and initial conditions. Consequently, the approximate solution is obtained by solving a linear system obtained from the collocation method in a reduced domain. For the first Stefan problem the moving boundary can be determined accurately, after solving a nonlinear equation at each discretized time. For the second Stefan problem, we can obtain the required boundary heat flux without needing of iteration. Numerical examples, including non-smooth ones, confirm that the novel methods are simple and robust against large noise. Moreover, the Stefan and inverse Cauchy-Stefan problems are solved without initial conditions.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"2772 - 2803\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1949591\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1949591\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1949591","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A homogenization method to solve inverse Cauchy–Stefan problems for recovering non-smooth moving boundary, heat flux and initial value
In the paper, we solve two Stefan problems. The first problem recovers an unknown moving boundary by specifying the Cauchy boundary conditions on a fixed left-end. The second problem finds a time-dependent heat flux on the left-end, such that a desired moving boundary can be achieved. Then, we solve an inverse Cauchy-Stefan problem, using the over-specified Cauchy boundary conditions on a given moving boundary to recover the solution. Resorting on a homogenization function method, we recast these problems into the ones having homogeneous boundary and initial conditions. Consequently, the approximate solution is obtained by solving a linear system obtained from the collocation method in a reduced domain. For the first Stefan problem the moving boundary can be determined accurately, after solving a nonlinear equation at each discretized time. For the second Stefan problem, we can obtain the required boundary heat flux without needing of iteration. Numerical examples, including non-smooth ones, confirm that the novel methods are simple and robust against large noise. Moreover, the Stefan and inverse Cauchy-Stefan problems are solved without initial conditions.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.