原始递归逆数学

IF 0.6 2区 数学 Q2 LOGIC
Nikolay Bazhenov , Marta Fiori-Carones , Lu Liu , Alexander Melnikov
{"title":"原始递归逆数学","authors":"Nikolay Bazhenov ,&nbsp;Marta Fiori-Carones ,&nbsp;Lu Liu ,&nbsp;Alexander Melnikov","doi":"10.1016/j.apal.2023.103354","DOIUrl":null,"url":null,"abstract":"<div><p>We use a second-order analogy <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><mi>PRA</mi></math></span> to investigate the proof-theoretic strength of theorems in countable algebra, analysis, and infinite combinatorics. We compare our results with similar results in the fast-developing field of primitive recursive (‘punctual’) algebra and analysis, and with results from ‘online’ combinatorics. We argue that <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is sufficiently robust to serve as an alternative base system below <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> to study the proof-theoretic content of theorems in ordinary mathematics. (The most popular alternative is perhaps <span><math><msubsup><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.) We discover that many theorems that are known to be true in <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> either hold in <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> or are equivalent to <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> or its weaker (but natural) analogy <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span>-<span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> over <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. However, we also discover that some standard mathematical and combinatorial facts are incomparable with these natural subsystems.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103354"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primitive recursive reverse mathematics\",\"authors\":\"Nikolay Bazhenov ,&nbsp;Marta Fiori-Carones ,&nbsp;Lu Liu ,&nbsp;Alexander Melnikov\",\"doi\":\"10.1016/j.apal.2023.103354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a second-order analogy <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <span><math><mi>PRA</mi></math></span> to investigate the proof-theoretic strength of theorems in countable algebra, analysis, and infinite combinatorics. We compare our results with similar results in the fast-developing field of primitive recursive (‘punctual’) algebra and analysis, and with results from ‘online’ combinatorics. We argue that <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is sufficiently robust to serve as an alternative base system below <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> to study the proof-theoretic content of theorems in ordinary mathematics. (The most popular alternative is perhaps <span><math><msubsup><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.) We discover that many theorems that are known to be true in <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> either hold in <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> or are equivalent to <span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> or its weaker (but natural) analogy <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span>-<span><math><msub><mrow><mi>RCA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> over <span><math><msup><mrow><mi>PRA</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. However, we also discover that some standard mathematical and combinatorial facts are incomparable with these natural subsystems.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 1\",\"pages\":\"Article 103354\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001112\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们使用PRA的二阶类比PRA2来研究可数代数、分析和无限组合中定理的证明理论强度。我们将我们的结果与快速发展的原始递归(“准时”)代数和分析领域的类似结果以及“在线”组合学的结果进行比较。我们认为PRA2具有足够的鲁棒性,可以作为RCA0之下的备选基系统来研究普通数学中定理的证明理论内容。(最流行的替代方案可能是RCA0。)我们发现许多在RCA0中已知为真的定理在PRA2中也成立,或者等价于RCA0或其较弱的(但自然的)类比2N-RCA0优于PRA2。然而,我们也发现一些标准的数学和组合事实与这些自然的子系统是无法比较的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primitive recursive reverse mathematics

We use a second-order analogy PRA2 of PRA to investigate the proof-theoretic strength of theorems in countable algebra, analysis, and infinite combinatorics. We compare our results with similar results in the fast-developing field of primitive recursive (‘punctual’) algebra and analysis, and with results from ‘online’ combinatorics. We argue that PRA2 is sufficiently robust to serve as an alternative base system below RCA0 to study the proof-theoretic content of theorems in ordinary mathematics. (The most popular alternative is perhaps RCA0.) We discover that many theorems that are known to be true in RCA0 either hold in PRA2 or are equivalent to RCA0 or its weaker (but natural) analogy 2N-RCA0 over PRA2. However, we also discover that some standard mathematical and combinatorial facts are incomparable with these natural subsystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信