Reema Fadoul, Tharwat Haj Khalil, Idan Redenski, D. Oren, Asaf Zigron, A. Sharon, A. Dror, M. Falah, S. Srouji
{"title":"脂肪来源干细胞对子宫内膜息肉成纤维细胞的调节作用。","authors":"Reema Fadoul, Tharwat Haj Khalil, Idan Redenski, D. Oren, Asaf Zigron, A. Sharon, A. Dror, M. Falah, S. Srouji","doi":"10.1089/scd.2021.0273","DOIUrl":null,"url":null,"abstract":"Endometrial polyps (EPs) are benign overgrowths of the endometrium, with the potential to cause severe complications, ranging from discomfort to inflammation and infertility. Dysfunction of endometrial fibroblasts may be a critical component leading to the development of polyps. While surgical intervention is the common remedy for severe cases, it comes with drawbacks, including infection, bleeding, and risk of damage to the cervix and adjacent tissues. Adipose-derived mesenchymal stromal cells (ASCs) are at the focus of modern medicine, as key modulators of tissue homeostasis, inflammation and tissue repair, rendering them prime candidate agents for tissue regeneration and cell-based therapies. In the current work, endometrial polyps were isolated from patients admitted to the OB/GYN department at the Galilee Medical Center and extracted fibroblasts (EPFs) were isolated and characterized. ASCs were isolated from healthy patients. The effect of EPF- and ASC-conditioned media (CM) on polyp-derived fibroblasts was evaluated, in both 2D and 3D assays, as well as on the expression of matrix-related gene expression. Herein, EPFs exposed to ASC-CM exhibited reduced migration, invasion, contraction of hydrogels, and extracellular matrix deposition, compared to those exposed to EPF-CM. Altogether, the current work suggests that ASCs may have a modulating effect on fibroblasts involved in forming endometrial polyps and may serve as the basis for conservative treatment strategies aimed at treating severe cases of EPs.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modulatory Effect of Adipose-Derived Stem Cells on Endometrial Polyp Fibroblasts.\",\"authors\":\"Reema Fadoul, Tharwat Haj Khalil, Idan Redenski, D. Oren, Asaf Zigron, A. Sharon, A. Dror, M. Falah, S. Srouji\",\"doi\":\"10.1089/scd.2021.0273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endometrial polyps (EPs) are benign overgrowths of the endometrium, with the potential to cause severe complications, ranging from discomfort to inflammation and infertility. Dysfunction of endometrial fibroblasts may be a critical component leading to the development of polyps. While surgical intervention is the common remedy for severe cases, it comes with drawbacks, including infection, bleeding, and risk of damage to the cervix and adjacent tissues. Adipose-derived mesenchymal stromal cells (ASCs) are at the focus of modern medicine, as key modulators of tissue homeostasis, inflammation and tissue repair, rendering them prime candidate agents for tissue regeneration and cell-based therapies. In the current work, endometrial polyps were isolated from patients admitted to the OB/GYN department at the Galilee Medical Center and extracted fibroblasts (EPFs) were isolated and characterized. ASCs were isolated from healthy patients. The effect of EPF- and ASC-conditioned media (CM) on polyp-derived fibroblasts was evaluated, in both 2D and 3D assays, as well as on the expression of matrix-related gene expression. Herein, EPFs exposed to ASC-CM exhibited reduced migration, invasion, contraction of hydrogels, and extracellular matrix deposition, compared to those exposed to EPF-CM. Altogether, the current work suggests that ASCs may have a modulating effect on fibroblasts involved in forming endometrial polyps and may serve as the basis for conservative treatment strategies aimed at treating severe cases of EPs.\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2021.0273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The Modulatory Effect of Adipose-Derived Stem Cells on Endometrial Polyp Fibroblasts.
Endometrial polyps (EPs) are benign overgrowths of the endometrium, with the potential to cause severe complications, ranging from discomfort to inflammation and infertility. Dysfunction of endometrial fibroblasts may be a critical component leading to the development of polyps. While surgical intervention is the common remedy for severe cases, it comes with drawbacks, including infection, bleeding, and risk of damage to the cervix and adjacent tissues. Adipose-derived mesenchymal stromal cells (ASCs) are at the focus of modern medicine, as key modulators of tissue homeostasis, inflammation and tissue repair, rendering them prime candidate agents for tissue regeneration and cell-based therapies. In the current work, endometrial polyps were isolated from patients admitted to the OB/GYN department at the Galilee Medical Center and extracted fibroblasts (EPFs) were isolated and characterized. ASCs were isolated from healthy patients. The effect of EPF- and ASC-conditioned media (CM) on polyp-derived fibroblasts was evaluated, in both 2D and 3D assays, as well as on the expression of matrix-related gene expression. Herein, EPFs exposed to ASC-CM exhibited reduced migration, invasion, contraction of hydrogels, and extracellular matrix deposition, compared to those exposed to EPF-CM. Altogether, the current work suggests that ASCs may have a modulating effect on fibroblasts involved in forming endometrial polyps and may serve as the basis for conservative treatment strategies aimed at treating severe cases of EPs.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development