{"title":"李群固有作用的高级类,II:有边界流形的情况","authors":"Paolo Piazza, H. Posthuma","doi":"10.2140/akt.2021.6.713","DOIUrl":null,"url":null,"abstract":"Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary\",\"authors\":\"Paolo Piazza, H. Posthuma\",\"doi\":\"10.2140/akt.2021.6.713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\\\\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary
Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.