测量误差模型的非参数模拟外推

Pub Date : 2023-06-27 DOI:10.1002/cjs.11777
Dylan Spicker, Michael P. Wallace, Grace Y. Yi
{"title":"测量误差模型的非参数模拟外推","authors":"Dylan Spicker,&nbsp;Michael P. Wallace,&nbsp;Grace Y. Yi","doi":"10.1002/cjs.11777","DOIUrl":null,"url":null,"abstract":"<p>The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11777","citationCount":"0","resultStr":"{\"title\":\"Nonparametric simulation extrapolation for measurement-error models\",\"authors\":\"Dylan Spicker,&nbsp;Michael P. Wallace,&nbsp;Grace Y. Yi\",\"doi\":\"10.1002/cjs.11777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11777\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测量误差的存在是一个普遍存在的问题,如果忽略它,可能会使分析结果不可靠。已经提出并研究了许多对测量误差影响的校正,通常是在正态分布的加性测量误差模型的假设下。一种这样的方法是模拟外推法(SIMEX)。在许多情况下,观测到的数据是非对称的、重尾的或高度非正态的。在这些设置中,依赖于正常性假设的校正技术是不可取的。我们提出了对模拟外推方法的扩展,该方法是非参数的,因为在误差项上不需要特定的分布假设。该技术是在验证数据或重复测量可用时实施的,并且设计为熟悉模拟外推的人可以立即访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonparametric simulation extrapolation for measurement-error models

分享
查看原文
Nonparametric simulation extrapolation for measurement-error models

The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信