{"title":"测量误差模型的非参数模拟外推","authors":"Dylan Spicker, Michael P. Wallace, Grace Y. Yi","doi":"10.1002/cjs.11777","DOIUrl":null,"url":null,"abstract":"<p>The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 2","pages":"477-499"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11777","citationCount":"0","resultStr":"{\"title\":\"Nonparametric simulation extrapolation for measurement-error models\",\"authors\":\"Dylan Spicker, Michael P. Wallace, Grace Y. Yi\",\"doi\":\"10.1002/cjs.11777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 2\",\"pages\":\"477-499\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11777\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11777\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11777","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric simulation extrapolation for measurement-error models
The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement-error model. In many situations, observed data are nonsymmetric, heavy-tailed, or otherwise highly non-normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.