无弯路的完备、加倍、一致完美度量空间的并矢立方体系统

Pub Date : 2021-10-22 DOI:10.4064/cm8702-7-2022
Kohei Sasaya
{"title":"无弯路的完备、加倍、一致完美度量空间的并矢立方体系统","authors":"Kohei Sasaya","doi":"10.4064/cm8702-7-2022","DOIUrl":null,"url":null,"abstract":"Systems of dyadic cubes are the basic tools of harmonic analysis and geometry, and this notion had been extended to general metric spaces. In this paper, we construct systems of dyadic cubes of complete, doubling, uniformly perfect metric spaces, such that for any two points in the metric space, there exists a chain of three cubes whose diameters are comparable to the distance of the points. We also give an application of our construction to previous research of potential analysis and geometry of metric spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Systems of dyadic cubes of complete, doubling, uniformly perfect metric spaces without detours\",\"authors\":\"Kohei Sasaya\",\"doi\":\"10.4064/cm8702-7-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems of dyadic cubes are the basic tools of harmonic analysis and geometry, and this notion had been extended to general metric spaces. In this paper, we construct systems of dyadic cubes of complete, doubling, uniformly perfect metric spaces, such that for any two points in the metric space, there exists a chain of three cubes whose diameters are comparable to the distance of the points. We also give an application of our construction to previous research of potential analysis and geometry of metric spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8702-7-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8702-7-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

并矢立方体系统是调和分析和几何的基本工具,这一概念已经推广到一般度量空间。在本文中,我们构造了完备的、加倍的、一致完美度量空间的并矢立方体系统,使得对于度量空间中的任意两点,存在一个由三个立方体组成的链,其直径与这些点的距离相当。我们还给出了我们的构造在度量空间的势分析和几何的先前研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Systems of dyadic cubes of complete, doubling, uniformly perfect metric spaces without detours
Systems of dyadic cubes are the basic tools of harmonic analysis and geometry, and this notion had been extended to general metric spaces. In this paper, we construct systems of dyadic cubes of complete, doubling, uniformly perfect metric spaces, such that for any two points in the metric space, there exists a chain of three cubes whose diameters are comparable to the distance of the points. We also give an application of our construction to previous research of potential analysis and geometry of metric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信