强双曲性的两个应用

Pub Date : 2019-01-03 DOI:10.1215/21562261-2019-0002
B. Nica
{"title":"强双曲性的两个应用","authors":"B. Nica","doi":"10.1215/21562261-2019-0002","DOIUrl":null,"url":null,"abstract":"We present two analytic applications of the fact that a hyperbolic group can be endowed with a strongly hyperbolic metric. The first application concerns the crossed-product C*-algebra defined by the action of a hyperbolic group on its boundary. We construct a natural time flow, involving the Busemann cocycle on the boundary. This flow has a natural KMS state, coming from the Hausdorff measure on the boundary, which is furthermore unique when the group is torsion-free. The second application is a short new proof of the fact that a hyperbolic group admits a proper isometric action on an $\\ell^p$-space, for large enough $p$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21562261-2019-0002","citationCount":"1","resultStr":"{\"title\":\"Two applications of strong hyperbolicity\",\"authors\":\"B. Nica\",\"doi\":\"10.1215/21562261-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two analytic applications of the fact that a hyperbolic group can be endowed with a strongly hyperbolic metric. The first application concerns the crossed-product C*-algebra defined by the action of a hyperbolic group on its boundary. We construct a natural time flow, involving the Busemann cocycle on the boundary. This flow has a natural KMS state, coming from the Hausdorff measure on the boundary, which is furthermore unique when the group is torsion-free. The second application is a short new proof of the fact that a hyperbolic group admits a proper isometric action on an $\\\\ell^p$-space, for large enough $p$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21562261-2019-0002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了双曲群可以被赋予强双曲度规这一事实的两个解析应用。第一个应用涉及由双曲群在其边界上的作用所定义的叉积C*-代数。我们构建了一个自然时间流,包括边界上的Busemann循环。这种流动具有自然的KMS状态,来自边界上的Hausdorff测度,并且在群无扭转时是唯一的。第二个应用是一个简短的新证明:对于足够大的$p$,双曲群在$\ell^p$-空间上具有适当的等距作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Two applications of strong hyperbolicity
We present two analytic applications of the fact that a hyperbolic group can be endowed with a strongly hyperbolic metric. The first application concerns the crossed-product C*-algebra defined by the action of a hyperbolic group on its boundary. We construct a natural time flow, involving the Busemann cocycle on the boundary. This flow has a natural KMS state, coming from the Hausdorff measure on the boundary, which is furthermore unique when the group is torsion-free. The second application is a short new proof of the fact that a hyperbolic group admits a proper isometric action on an $\ell^p$-space, for large enough $p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信