用两个复对称分解复双曲等边

Pub Date : 2017-10-01 DOI:10.18910/67006
Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang
{"title":"用两个复对称分解复双曲等边","authors":"Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang","doi":"10.18910/67006","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\\mathbf{H}_{\\mathbb{C}}^{2}$, and the group $\\mathbf{SU}(2,1)$ is a 3-fold covering of $\\mathbf{PU}(2,1)$: $\\mathbf{PU}(2,1)=\\mathbf{SU}(2,1)/\\{\\omega I:\\omega^{3}=1\\}$. We study how to decompose a given pair of isometries $(A,B)\\in \\mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decomposition of complex hyperbolic isometries by two complex symmetries\",\"authors\":\"Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang\",\"doi\":\"10.18910/67006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\\\\mathbf{H}_{\\\\mathbb{C}}^{2}$, and the group $\\\\mathbf{SU}(2,1)$ is a 3-fold covering of $\\\\mathbf{PU}(2,1)$: $\\\\mathbf{PU}(2,1)=\\\\mathbf{SU}(2,1)/\\\\{\\\\omega I:\\\\omega^{3}=1\\\\}$. We study how to decompose a given pair of isometries $(A,B)\\\\in \\\\mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\\\\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/67006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/67006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$\mathbf{PU}(2,1)$表示$2$维复双曲空间$\mathbf的全纯等距群{H}_{\mathbb{C}}^{2}$,并且群$\mathbf{SU}(2,1)$是$\mathbf{PU}(2,1)$的3重覆盖:$\mathbf{PU}(2,2)=\mathbf{SU}(2、1)/\{\omega I:\ omega ^{3}=1\}$。我们研究了如何将给定的一对等距$(a,B)\in\mathbf{SU}(2,1)^{2}$分解为形式$a=I_{1}I_{2} $和$B=I_{3}I_{2} ,$,其中$I_{k}$是关于复直线的复对称性。如果$(A,B)$可以如上所述编写,我们称之为$\mathbb{C}$可分解。主要结果是可分解性准则,对[17]的结果进行了改进和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Decomposition of complex hyperbolic isometries by two complex symmetries
Let $\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^{2}$, and the group $\mathbf{SU}(2,1)$ is a 3-fold covering of $\mathbf{PU}(2,1)$: $\mathbf{PU}(2,1)=\mathbf{SU}(2,1)/\{\omega I:\omega^{3}=1\}$. We study how to decompose a given pair of isometries $(A,B)\in \mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信