用两个复对称分解复双曲等边

IF 0.5 4区 数学 Q3 MATHEMATICS
Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang
{"title":"用两个复对称分解复双曲等边","authors":"Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang","doi":"10.18910/67006","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\\mathbf{H}_{\\mathbb{C}}^{2}$, and the group $\\mathbf{SU}(2,1)$ is a 3-fold covering of $\\mathbf{PU}(2,1)$: $\\mathbf{PU}(2,1)=\\mathbf{SU}(2,1)/\\{\\omega I:\\omega^{3}=1\\}$. We study how to decompose a given pair of isometries $(A,B)\\in \\mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"54 1","pages":"661-677"},"PeriodicalIF":0.5000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decomposition of complex hyperbolic isometries by two complex symmetries\",\"authors\":\"Xue-Jing Ren, Baohua Xie, Yue-Ping Jiang\",\"doi\":\"10.18910/67006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\\\\mathbf{H}_{\\\\mathbb{C}}^{2}$, and the group $\\\\mathbf{SU}(2,1)$ is a 3-fold covering of $\\\\mathbf{PU}(2,1)$: $\\\\mathbf{PU}(2,1)=\\\\mathbf{SU}(2,1)/\\\\{\\\\omega I:\\\\omega^{3}=1\\\\}$. We study how to decompose a given pair of isometries $(A,B)\\\\in \\\\mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\\\\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"54 1\",\"pages\":\"661-677\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/67006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/67006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$\mathbf{PU}(2,1)$表示$2$维复双曲空间$\mathbf的全纯等距群{H}_{\mathbb{C}}^{2}$,并且群$\mathbf{SU}(2,1)$是$\mathbf{PU}(2,1)$的3重覆盖:$\mathbf{PU}(2,2)=\mathbf{SU}(2、1)/\{\omega I:\ omega ^{3}=1\}$。我们研究了如何将给定的一对等距$(a,B)\in\mathbf{SU}(2,1)^{2}$分解为形式$a=I_{1}I_{2} $和$B=I_{3}I_{2} ,$,其中$I_{k}$是关于复直线的复对称性。如果$(A,B)$可以如上所述编写,我们称之为$\mathbb{C}$可分解。主要结果是可分解性准则,对[17]的结果进行了改进和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of complex hyperbolic isometries by two complex symmetries
Let $\mathbf{PU}(2,1)$ denote the holomorphic isometry group of the $2$-dimensional complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^{2}$, and the group $\mathbf{SU}(2,1)$ is a 3-fold covering of $\mathbf{PU}(2,1)$: $\mathbf{PU}(2,1)=\mathbf{SU}(2,1)/\{\omega I:\omega^{3}=1\}$. We study how to decompose a given pair of isometries $(A,B)\in \mathbf{SU}(2,1)^{2}$ under the form $A=I_{1}I_{2}$ and $B=I_{3}I_{2},$ where the $I_{k}$'s are complex symmetries about complex lines. If $(A,B)$ can be written as above, we call it is $\mathbb{C}$-decomposable. The main results are decomposability criteria, which improve and supplement the result of [17].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信