Noetherian分次代数的Epsilon多重性

IF 0.6 Q3 MATHEMATICS
Suprajo Das
{"title":"Noetherian分次代数的Epsilon多重性","authors":"Suprajo Das","doi":"10.1215/00192082-10005368","DOIUrl":null,"url":null,"abstract":"The notion of $\\varepsilon$-multiplicity was originally defined by Ulrich and Validashti as a limsup and they used it to detect integral dependence of modules. It is important to know if it can be realized as a limit. In this article we show that the relative $\\varepsilon$-multiplicity of reduced Noetherian graded algebras over an excellent local ring exists as a limit. We also obtain a generalization of Cutkosky's result concerning $\\varepsilon$-multiplicity, as a corollary of our main theorem.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epsilon multiplicity for Noetherian graded algebras\",\"authors\":\"Suprajo Das\",\"doi\":\"10.1215/00192082-10005368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of $\\\\varepsilon$-multiplicity was originally defined by Ulrich and Validashti as a limsup and they used it to detect integral dependence of modules. It is important to know if it can be realized as a limit. In this article we show that the relative $\\\\varepsilon$-multiplicity of reduced Noetherian graded algebras over an excellent local ring exists as a limit. We also obtain a generalization of Cutkosky's result concerning $\\\\varepsilon$-multiplicity, as a corollary of our main theorem.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10005368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10005368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

多重性的概念最初是由Ulrich和Validashti作为limsup定义的,他们用它来检测模块的积分依赖性。重要的是要知道它是否可以作为一个极限来实现。在本文中,我们证明了在一个优局部环上约简noether阶代数的相对$\varepsilon$-多重性作为极限存在。我们也得到了Cutkosky关于varepsilon -多重性的结论的推广,作为我们主要定理的一个推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epsilon multiplicity for Noetherian graded algebras
The notion of $\varepsilon$-multiplicity was originally defined by Ulrich and Validashti as a limsup and they used it to detect integral dependence of modules. It is important to know if it can be realized as a limit. In this article we show that the relative $\varepsilon$-multiplicity of reduced Noetherian graded algebras over an excellent local ring exists as a limit. We also obtain a generalization of Cutkosky's result concerning $\varepsilon$-multiplicity, as a corollary of our main theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信