通过图深度学习将多模式上下文信息纳入交通速度预测

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yatao Zhang, Tianhong Zhao, Song Gao, M. Raubal
{"title":"通过图深度学习将多模式上下文信息纳入交通速度预测","authors":"Yatao Zhang, Tianhong Zhao, Song Gao, M. Raubal","doi":"10.1080/13658816.2023.2234959","DOIUrl":null,"url":null,"abstract":"Abstract Accurate traffic speed forecasting is a prerequisite for anticipating future traffic status and increasing the resilience of intelligent transportation systems. However, most studies ignore the involvement of context information ubiquitously distributed over the urban environment to boost speed prediction. The diversity and complexity of context information also hinder incorporating it into traffic forecasting. Therefore, this study proposes a multimodal context-based graph convolutional neural network (MCGCN) model to fuse context data into traffic speed prediction, including spatial and temporal contexts. The proposed model comprises three modules, ie (a) hierarchical spatial embedding to learn spatial representations by organizing spatial contexts from different dimensions, (b) multivariate temporal modeling to learn temporal representations by capturing dependencies of multivariate temporal contexts and (c) attention-based multimodal fusion to integrate traffic speed with the spatial and temporal context representations for multi-step speed prediction. We conduct extensive experiments in Singapore. Compared to the baseline model (spatial-temporal graph convolutional network, STGCN), our results demonstrate the importance of multimodal contexts with the mean-absolute-error improvement of 0.29 km/h, 0.45 km/h and 0.89 km/h in 30-min, 60-min and 120-min speed prediction, respectively. We also explore how different contexts affect traffic speed forecasting, providing references for stakeholders to understand the relationship between context information and transportation systems.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1909 - 1935"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incorporating multimodal context information into traffic speed forecasting through graph deep learning\",\"authors\":\"Yatao Zhang, Tianhong Zhao, Song Gao, M. Raubal\",\"doi\":\"10.1080/13658816.2023.2234959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurate traffic speed forecasting is a prerequisite for anticipating future traffic status and increasing the resilience of intelligent transportation systems. However, most studies ignore the involvement of context information ubiquitously distributed over the urban environment to boost speed prediction. The diversity and complexity of context information also hinder incorporating it into traffic forecasting. Therefore, this study proposes a multimodal context-based graph convolutional neural network (MCGCN) model to fuse context data into traffic speed prediction, including spatial and temporal contexts. The proposed model comprises three modules, ie (a) hierarchical spatial embedding to learn spatial representations by organizing spatial contexts from different dimensions, (b) multivariate temporal modeling to learn temporal representations by capturing dependencies of multivariate temporal contexts and (c) attention-based multimodal fusion to integrate traffic speed with the spatial and temporal context representations for multi-step speed prediction. We conduct extensive experiments in Singapore. Compared to the baseline model (spatial-temporal graph convolutional network, STGCN), our results demonstrate the importance of multimodal contexts with the mean-absolute-error improvement of 0.29 km/h, 0.45 km/h and 0.89 km/h in 30-min, 60-min and 120-min speed prediction, respectively. We also explore how different contexts affect traffic speed forecasting, providing references for stakeholders to understand the relationship between context information and transportation systems.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"37 1\",\"pages\":\"1909 - 1935\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2234959\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2234959","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

摘要准确的交通速度预测是预测未来交通状况和提高智能交通系统弹性的先决条件。然而,大多数研究忽略了普遍分布在城市环境中的上下文信息的参与,以提高速度预测。上下文信息的多样性和复杂性也阻碍了将其纳入交通预测。因此,本研究提出了一种基于多模式上下文的图卷积神经网络(MCGCN)模型,将上下文数据融合到交通速度预测中,包括空间和时间上下文。所提出的模型包括三个模块,即(a)通过从不同维度组织空间上下文来学习空间表示的分层空间嵌入,(b)通过捕获多变量时间上下文的依赖性来学习时间表示的多变量时间建模,以及(c)基于注意力的多模式融合,以将交通速度与空间和时间上下文表示集成用于多步骤速度预测。我们在新加坡进行了广泛的实验。与基线模型(时空图卷积网络,STGCN)相比,我们的结果证明了多模式上下文的重要性,平均绝对误差提高了0.29 公里/小时,0.45 km/h和0.89 速度预测分别为30分钟、60分钟和120分钟。我们还探讨了不同的环境如何影响交通速度预测,为利益相关者理解环境信息与交通系统之间的关系提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating multimodal context information into traffic speed forecasting through graph deep learning
Abstract Accurate traffic speed forecasting is a prerequisite for anticipating future traffic status and increasing the resilience of intelligent transportation systems. However, most studies ignore the involvement of context information ubiquitously distributed over the urban environment to boost speed prediction. The diversity and complexity of context information also hinder incorporating it into traffic forecasting. Therefore, this study proposes a multimodal context-based graph convolutional neural network (MCGCN) model to fuse context data into traffic speed prediction, including spatial and temporal contexts. The proposed model comprises three modules, ie (a) hierarchical spatial embedding to learn spatial representations by organizing spatial contexts from different dimensions, (b) multivariate temporal modeling to learn temporal representations by capturing dependencies of multivariate temporal contexts and (c) attention-based multimodal fusion to integrate traffic speed with the spatial and temporal context representations for multi-step speed prediction. We conduct extensive experiments in Singapore. Compared to the baseline model (spatial-temporal graph convolutional network, STGCN), our results demonstrate the importance of multimodal contexts with the mean-absolute-error improvement of 0.29 km/h, 0.45 km/h and 0.89 km/h in 30-min, 60-min and 120-min speed prediction, respectively. We also explore how different contexts affect traffic speed forecasting, providing references for stakeholders to understand the relationship between context information and transportation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信