珍珠岩膨胀颗粒保温性能评价

Hadeer Mahmood Yahya, Karima Esmail Amori
{"title":"珍珠岩膨胀颗粒保温性能评价","authors":"Hadeer Mahmood Yahya, Karima Esmail Amori","doi":"10.32852/iqjfmme.v21i3.560","DOIUrl":null,"url":null,"abstract":"The aim of this work is to test the effectiveness of new thermal insulation material formed from semi-spherical Perlite expanded particles for liquefied petroleum gas (LPG) tanks. Five different samples of semi-spherical particles of (68.8, 90.4, 300.5, 1211000, 1861000) *10-9 m diameter are used as a new thermal insulating material in this work. To simulate the LPG tank wall, a stainless-steel plate of a thickness (3mm) is coated with this material and subjected to a resistive type flat plate heater. The thermal insulation coating thickness was (0.5mm to 2mm). This plate is subjected to different power loads namely (650, 1260 W/m2). Results show that increasing the insulation expanded particle size increases the difference in temperatures on both sides of the insulation layer. The first three sizes of the insulation material reported a temperature difference at both sides of the coating layer is about 18 oC, while that for the fourth and fifth size are 20 oC and 25 oC respectively since larger expanded particles size has higher air content that enables them to reduce and delay heat transfer. The thermal conductivity of coated thermal insulation with large Perlite particle size is (0.25 W/m.K), while that for small size is (0.42 W/m.K). The previously reported thermal conductivity for Silica granules is less than 0.4 W/(m.K)for insulation thickness of (50 mm), while that for binderless cotton stalk fiberboard (BCSF) is ranged from 0.0585 to 0.0815 W/m K for board thickness 25mm. The indicated thermal conductivity for coconut husk and bagasse insulation boards is 0.046 and 0.068 W/mK for board thickness 25mm. So utilizing Perlite expanded particles as an insulation material is superior since it is a slim layer not exceeded 2 mm.","PeriodicalId":31812,"journal":{"name":"Iraqi Journal for Mechanical and Materials Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EVALUATION OF THERMAL INSULATION PERFORMANCE OF PERLITE EXPANDED PARTICLES\",\"authors\":\"Hadeer Mahmood Yahya, Karima Esmail Amori\",\"doi\":\"10.32852/iqjfmme.v21i3.560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to test the effectiveness of new thermal insulation material formed from semi-spherical Perlite expanded particles for liquefied petroleum gas (LPG) tanks. Five different samples of semi-spherical particles of (68.8, 90.4, 300.5, 1211000, 1861000) *10-9 m diameter are used as a new thermal insulating material in this work. To simulate the LPG tank wall, a stainless-steel plate of a thickness (3mm) is coated with this material and subjected to a resistive type flat plate heater. The thermal insulation coating thickness was (0.5mm to 2mm). This plate is subjected to different power loads namely (650, 1260 W/m2). Results show that increasing the insulation expanded particle size increases the difference in temperatures on both sides of the insulation layer. The first three sizes of the insulation material reported a temperature difference at both sides of the coating layer is about 18 oC, while that for the fourth and fifth size are 20 oC and 25 oC respectively since larger expanded particles size has higher air content that enables them to reduce and delay heat transfer. The thermal conductivity of coated thermal insulation with large Perlite particle size is (0.25 W/m.K), while that for small size is (0.42 W/m.K). The previously reported thermal conductivity for Silica granules is less than 0.4 W/(m.K)for insulation thickness of (50 mm), while that for binderless cotton stalk fiberboard (BCSF) is ranged from 0.0585 to 0.0815 W/m K for board thickness 25mm. The indicated thermal conductivity for coconut husk and bagasse insulation boards is 0.046 and 0.068 W/mK for board thickness 25mm. So utilizing Perlite expanded particles as an insulation material is superior since it is a slim layer not exceeded 2 mm.\",\"PeriodicalId\":31812,\"journal\":{\"name\":\"Iraqi Journal for Mechanical and Materials Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32852/iqjfmme.v21i3.560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32852/iqjfmme.v21i3.560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是测试由半球形珍珠岩膨胀颗粒形成的用于液化石油气(LPG)储罐的新型隔热材料的有效性。采用(68.8,90.4,300.5,1211000,1861000)× 10-9 m直径的5种不同的半球形颗粒样品作为新型保温材料。为了模拟液化石油气罐壁,在一块厚度为3mm的不锈钢板上涂上这种材料,并经过电阻式平板加热器加热。保温涂层厚度为(0.5mm ~ 2mm)。该板承受不同的功率负载,即(650,1260 W/m2)。结果表明,保温膨胀颗粒尺寸的增大,保温层两侧的温度差增大。据报道,前三种尺寸的保温材料在涂层两侧的温差约为18℃,而第四和第五种尺寸的保温材料的温差分别为20℃和25℃,因为较大的膨胀颗粒尺寸具有较高的空气含量,使它们能够减少和延迟传热。大珍珠岩粒径包覆绝热材料导热系数为(0.25 W/m.K),小珍珠岩粒径包覆绝热材料导热系数为(0.42 W/m.K)。先前报道的绝缘厚度为(50 mm)时二氧化硅颗粒的导热系数小于0.4 W/(m.K),而无粘结棉秸秆纤维板(BCSF)的导热系数为0.0585至0.0815 W/ m.K,板厚为25mm。椰子壳和甘蔗渣保温板的导热系数分别为0.046和0.068 W/mK,板厚为25mm。因此,利用珍珠岩膨胀颗粒作为绝缘材料是优越的,因为它是一层不超过2毫米的薄层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EVALUATION OF THERMAL INSULATION PERFORMANCE OF PERLITE EXPANDED PARTICLES
The aim of this work is to test the effectiveness of new thermal insulation material formed from semi-spherical Perlite expanded particles for liquefied petroleum gas (LPG) tanks. Five different samples of semi-spherical particles of (68.8, 90.4, 300.5, 1211000, 1861000) *10-9 m diameter are used as a new thermal insulating material in this work. To simulate the LPG tank wall, a stainless-steel plate of a thickness (3mm) is coated with this material and subjected to a resistive type flat plate heater. The thermal insulation coating thickness was (0.5mm to 2mm). This plate is subjected to different power loads namely (650, 1260 W/m2). Results show that increasing the insulation expanded particle size increases the difference in temperatures on both sides of the insulation layer. The first three sizes of the insulation material reported a temperature difference at both sides of the coating layer is about 18 oC, while that for the fourth and fifth size are 20 oC and 25 oC respectively since larger expanded particles size has higher air content that enables them to reduce and delay heat transfer. The thermal conductivity of coated thermal insulation with large Perlite particle size is (0.25 W/m.K), while that for small size is (0.42 W/m.K). The previously reported thermal conductivity for Silica granules is less than 0.4 W/(m.K)for insulation thickness of (50 mm), while that for binderless cotton stalk fiberboard (BCSF) is ranged from 0.0585 to 0.0815 W/m K for board thickness 25mm. The indicated thermal conductivity for coconut husk and bagasse insulation boards is 0.046 and 0.068 W/mK for board thickness 25mm. So utilizing Perlite expanded particles as an insulation material is superior since it is a slim layer not exceeded 2 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信