旋翼无人直升机的深度强化学习视觉伺服

IF 2.3 4区 计算机科学 Q2 Computer Science
Chunyang Hu, Wenping Cao, Bin Ning
{"title":"旋翼无人直升机的深度强化学习视觉伺服","authors":"Chunyang Hu, Wenping Cao, Bin Ning","doi":"10.1177/17298806221084825","DOIUrl":null,"url":null,"abstract":"Visual servoing is a key approach to achieve visual control for the rotor unmanned helicopter. The challenges of the inaccurate matrix estimation and the target loss restrict the performance of the visual servoing control systems. This work proposes a novel visual servoing controller using the deep Q-network to achieve an efficient matrix estimation. A deep Q-network learning agent learns a policy estimating the interaction matrix for visual servoing of a rotor unmanned helicopter using continuous observation. The observation includes a combination of feature errors. The current matrix and the desired matrix constitute the action space. A well-designed reward guides the deep Q-network agent to get a policy to generate a time-varying linear combination between the current matrix and the desired matrix. Then, the interaction matrix is calculated by the linear combination. The potential mapping between the observation and the interaction matrix is learned by cascading the deep neural network layers. Experimental results show that the proposed method achieves faster convergence and lower target loss probability in tracking than the visual servoing methods with the fixed parameter.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visual servoing with deep reinforcement learning for rotor unmanned helicopter\",\"authors\":\"Chunyang Hu, Wenping Cao, Bin Ning\",\"doi\":\"10.1177/17298806221084825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual servoing is a key approach to achieve visual control for the rotor unmanned helicopter. The challenges of the inaccurate matrix estimation and the target loss restrict the performance of the visual servoing control systems. This work proposes a novel visual servoing controller using the deep Q-network to achieve an efficient matrix estimation. A deep Q-network learning agent learns a policy estimating the interaction matrix for visual servoing of a rotor unmanned helicopter using continuous observation. The observation includes a combination of feature errors. The current matrix and the desired matrix constitute the action space. A well-designed reward guides the deep Q-network agent to get a policy to generate a time-varying linear combination between the current matrix and the desired matrix. Then, the interaction matrix is calculated by the linear combination. The potential mapping between the observation and the interaction matrix is learned by cascading the deep neural network layers. Experimental results show that the proposed method achieves faster convergence and lower target loss probability in tracking than the visual servoing methods with the fixed parameter.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221084825\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221084825","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

视觉伺服是实现旋翼无人直升机视觉控制的关键方法。矩阵估计不准确和目标损失的挑战限制了视觉伺服控制系统的性能。本文提出了一种新的视觉伺服控制器,该控制器使用深度Q网络来实现有效的矩阵估计。深度Q网络学习代理使用连续观测学习估计旋翼无人直升机视觉伺服交互矩阵的策略。观测包括特征误差的组合。当前矩阵和期望矩阵构成动作空间。精心设计的奖励引导深度Q网络代理获得策略,以在当前矩阵和期望矩阵之间生成时变线性组合。然后,通过线性组合来计算相互作用矩阵。通过级联深度神经网络层来学习观测和交互矩阵之间的潜在映射。实验结果表明,与固定参数的视觉伺服方法相比,该方法具有更快的收敛速度和更低的目标丢失概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual servoing with deep reinforcement learning for rotor unmanned helicopter
Visual servoing is a key approach to achieve visual control for the rotor unmanned helicopter. The challenges of the inaccurate matrix estimation and the target loss restrict the performance of the visual servoing control systems. This work proposes a novel visual servoing controller using the deep Q-network to achieve an efficient matrix estimation. A deep Q-network learning agent learns a policy estimating the interaction matrix for visual servoing of a rotor unmanned helicopter using continuous observation. The observation includes a combination of feature errors. The current matrix and the desired matrix constitute the action space. A well-designed reward guides the deep Q-network agent to get a policy to generate a time-varying linear combination between the current matrix and the desired matrix. Then, the interaction matrix is calculated by the linear combination. The potential mapping between the observation and the interaction matrix is learned by cascading the deep neural network layers. Experimental results show that the proposed method achieves faster convergence and lower target loss probability in tracking than the visual servoing methods with the fixed parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信