关于Severi-Brauer品种产品的k -理论隐属

IF 0.5 Q3 MATHEMATICS
N. Karpenko, Eoin Mackall
{"title":"关于Severi-Brauer品种产品的k -理论隐属","authors":"N. Karpenko, Eoin Mackall","doi":"10.2140/AKT.2019.4.317","DOIUrl":null,"url":null,"abstract":"For X a product of Severi-Brauer varieties, we conjecture: if the Chow ring of X is generated by Chern classes, then the canonical epimorphism from the Chow ring of X to the graded ring associated to the coniveau filtration of the Grothendieck ring of X is an isomorphism. We show this conjecture is equivalent to: if G is a split semisimple algebraic group of type AC, B is a Borel subgroup of G and E is a standard generic G-torsor, then the canonical epimorphism from the Chow ring of E/B to the graded ring associated with the coniveau filtration of the Grothendieck ring of E/B is an isomorphism. In certain cases we verify this conjecture. Notation and Conventions. We fix a field k throughout. All of our objects are defined over k unless stated otherwise. Sometimes we use k as an index when no confusion will occur. For any field F , we fix an algebraic closure F . A variety X is a separated scheme of finite type over a field. Let X = X1 × · · · ×Xr be a product of varieties with projections πi : X → Xi. Let F1, ...,Fr be sheaves of modules on X1, ..., Xr. We use F1 · · · Fr for the external product π∗ 1F1⊗ · · ·⊗π∗ rFr. For a ring R with a Z-indexed descending filtration F • ν , (e.g. ν = γ or τ as in Section 2), we write grνR for the corresponding quotient F i ν/F i+1 ν . We write grνR = ⊕ i∈Z gr i νR for the associated graded ring. A semisimple algebraic group G is of type AC if its Dynkin diagram is a union of diagrams of type A and type C. Similarly a semisimple group G is of type AA if its Dynkin diagram is a union of diagrams of type A. For an index set I, two elements i, j ∈ I, we write δij for the function which is 0 when i 6= j and 1 if i = j. Given two r-tuples of integers, say I, J , we write I < J if the ith component of I is less than the ith component of J for any 1 ≤ i ≤ r.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2019.4.317","citationCount":"8","resultStr":"{\"title\":\"On the K-theory coniveau epimorphism for\\nproducts of Severi–Brauer varieties\",\"authors\":\"N. Karpenko, Eoin Mackall\",\"doi\":\"10.2140/AKT.2019.4.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For X a product of Severi-Brauer varieties, we conjecture: if the Chow ring of X is generated by Chern classes, then the canonical epimorphism from the Chow ring of X to the graded ring associated to the coniveau filtration of the Grothendieck ring of X is an isomorphism. We show this conjecture is equivalent to: if G is a split semisimple algebraic group of type AC, B is a Borel subgroup of G and E is a standard generic G-torsor, then the canonical epimorphism from the Chow ring of E/B to the graded ring associated with the coniveau filtration of the Grothendieck ring of E/B is an isomorphism. In certain cases we verify this conjecture. Notation and Conventions. We fix a field k throughout. All of our objects are defined over k unless stated otherwise. Sometimes we use k as an index when no confusion will occur. For any field F , we fix an algebraic closure F . A variety X is a separated scheme of finite type over a field. Let X = X1 × · · · ×Xr be a product of varieties with projections πi : X → Xi. Let F1, ...,Fr be sheaves of modules on X1, ..., Xr. We use F1 · · · Fr for the external product π∗ 1F1⊗ · · ·⊗π∗ rFr. For a ring R with a Z-indexed descending filtration F • ν , (e.g. ν = γ or τ as in Section 2), we write grνR for the corresponding quotient F i ν/F i+1 ν . We write grνR = ⊕ i∈Z gr i νR for the associated graded ring. A semisimple algebraic group G is of type AC if its Dynkin diagram is a union of diagrams of type A and type C. Similarly a semisimple group G is of type AA if its Dynkin diagram is a union of diagrams of type A. For an index set I, two elements i, j ∈ I, we write δij for the function which is 0 when i 6= j and 1 if i = j. Given two r-tuples of integers, say I, J , we write I < J if the ith component of I is less than the ith component of J for any 1 ≤ i ≤ r.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/AKT.2019.4.317\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AKT.2019.4.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2019.4.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

对于Severi-Brauer变积X,我们推测:如果X的Chow环是由chen类生成的,那么X的Chow环到与X的Grothendieck环的conveau滤除相关的梯度环的正则外胚是同构的。我们证明这个猜想等价于:如果G是AC型的分裂半单代数群,B是G的Borel子群,E是标准泛G-环,那么E/B的Chow环到与E/B的Grothendieck环的凹滤相关的梯度环的正则外胚是同构的。在某些情况下,我们证实了这个猜想。符号和约定。我们固定一个场k。除非另有说明,所有的对象都是在k上定义的。有时我们使用k作为索引,但不会引起混淆。对于任意域F,我们固定一个代数闭包F。变量X是域上的有限型分离格式。设F1,…,对于X1上的2捆模块,…Xr。我们用F1··Fr表示外部产物π∗1F1⊗··⊗π∗rFr。对于具有z指标降序过滤F•ν的环R,(如第2节中的ν = γ或τ),我们用grνR表示相应的商F i ν/F i+1 ν。对于相应的分级环,我们写grνR =⊕i∈Z gri νR。半单代数G组的类型是交流如果丹金图形是一个联盟的图和c型同样类型的半单G组的类型是AA如果丹金图形是一个联盟的图索引的类型A组我,两个元素I, j∈我,我们写δ函数ij是0,当我6 j和1如果我= = j。鉴于两r-tuples整数,说我,j,我们写我< j如果我的I分量小于第I个组件的任何1≤≤j r。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the K-theory coniveau epimorphism for products of Severi–Brauer varieties
For X a product of Severi-Brauer varieties, we conjecture: if the Chow ring of X is generated by Chern classes, then the canonical epimorphism from the Chow ring of X to the graded ring associated to the coniveau filtration of the Grothendieck ring of X is an isomorphism. We show this conjecture is equivalent to: if G is a split semisimple algebraic group of type AC, B is a Borel subgroup of G and E is a standard generic G-torsor, then the canonical epimorphism from the Chow ring of E/B to the graded ring associated with the coniveau filtration of the Grothendieck ring of E/B is an isomorphism. In certain cases we verify this conjecture. Notation and Conventions. We fix a field k throughout. All of our objects are defined over k unless stated otherwise. Sometimes we use k as an index when no confusion will occur. For any field F , we fix an algebraic closure F . A variety X is a separated scheme of finite type over a field. Let X = X1 × · · · ×Xr be a product of varieties with projections πi : X → Xi. Let F1, ...,Fr be sheaves of modules on X1, ..., Xr. We use F1 · · · Fr for the external product π∗ 1F1⊗ · · ·⊗π∗ rFr. For a ring R with a Z-indexed descending filtration F • ν , (e.g. ν = γ or τ as in Section 2), we write grνR for the corresponding quotient F i ν/F i+1 ν . We write grνR = ⊕ i∈Z gr i νR for the associated graded ring. A semisimple algebraic group G is of type AC if its Dynkin diagram is a union of diagrams of type A and type C. Similarly a semisimple group G is of type AA if its Dynkin diagram is a union of diagrams of type A. For an index set I, two elements i, j ∈ I, we write δij for the function which is 0 when i 6= j and 1 if i = j. Given two r-tuples of integers, say I, J , we write I < J if the ith component of I is less than the ith component of J for any 1 ≤ i ≤ r.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信