{"title":"一类(k, ψ)-Hilfer分数阶微分方程系统的全局最优解:最佳邻近点法","authors":"P. Patle, M. Gabeleh, M. de La Sen","doi":"10.1515/dema-2022-0253","DOIUrl":null,"url":null,"abstract":"Abstract In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving ( k , ψ ) \\left(k,\\psi ) -Hilfer fractional derivatives.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach\",\"authors\":\"P. Patle, M. Gabeleh, M. de La Sen\",\"doi\":\"10.1515/dema-2022-0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving ( k , ψ ) \\\\left(k,\\\\psi ) -Hilfer fractional derivatives.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0253\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach
Abstract In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving ( k , ψ ) \left(k,\psi ) -Hilfer fractional derivatives.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.