与扭曲拉普拉斯算子相关的谱投影的夏普$L^p$-$L^q$估计

Pub Date : 2020-08-21 DOI:10.5565/publmat6622210
Eunhee Jeong, Sanghyuk Lee, Jaehyeon Ryu
{"title":"与扭曲拉普拉斯算子相关的谱投影的夏普$L^p$-$L^q$估计","authors":"Eunhee Jeong, Sanghyuk Lee, Jaehyeon Ryu","doi":"10.5565/publmat6622210","DOIUrl":null,"url":null,"abstract":"In this note we are concerned with estimates for the spectral projection operator $\\mathcal{P}_\\mu$ associated with the twisted Laplacian $L$. We completely characterize the optimal bounds on the operator norm of $\\mathcal{P}_\\mu$ from $L^p$ to $L^q$ when $1\\le p\\le 2\\le q\\le \\infty$. As an application, we obtain uniform resolvent estimate for $L$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sharp $L^p$-$L^q$ estimate fof the spectral projection associated with the twisted Laplacian\",\"authors\":\"Eunhee Jeong, Sanghyuk Lee, Jaehyeon Ryu\",\"doi\":\"10.5565/publmat6622210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we are concerned with estimates for the spectral projection operator $\\\\mathcal{P}_\\\\mu$ associated with the twisted Laplacian $L$. We completely characterize the optimal bounds on the operator norm of $\\\\mathcal{P}_\\\\mu$ from $L^p$ to $L^q$ when $1\\\\le p\\\\le 2\\\\le q\\\\le \\\\infty$. As an application, we obtain uniform resolvent estimate for $L$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这篇笔记中,我们关注与扭曲拉普拉斯$L$相关的谱投影算子$\mathcal{P}_\mu$的估计。在$1\le p\le 2\le q\le \infty$时,我们完整地刻画了$\mathcal{P}_\mu$从$L^p$到$L^q$的算子范数的最优界。作为应用,我们得到了$L$的均匀分辨率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp $L^p$-$L^q$ estimate fof the spectral projection associated with the twisted Laplacian
In this note we are concerned with estimates for the spectral projection operator $\mathcal{P}_\mu$ associated with the twisted Laplacian $L$. We completely characterize the optimal bounds on the operator norm of $\mathcal{P}_\mu$ from $L^p$ to $L^q$ when $1\le p\le 2\le q\le \infty$. As an application, we obtain uniform resolvent estimate for $L$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信