Sheffer-Stroke-Hilbert代数的Dokdo滤波器和演绎系统

IF 1 Q1 MATHEMATICS
S. Ahn, H. Kim, S. Song, Y. Jun
{"title":"Sheffer-Stroke-Hilbert代数的Dokdo滤波器和演绎系统","authors":"S. Ahn, H. Kim, S. Song, Y. Jun","doi":"10.29020/nybg.ejpam.v16i3.4872","DOIUrl":null,"url":null,"abstract":"To investigate the filter and deductive system of the Schaefer stroke Hilbert algebra using the Dokdo structure, the concept of Dokdo filter and Dokdo deductive system is defined, examples are given, and various properties are investigated. The Dokdo filter is formed by attaching appropriate conditions to the given Dokdo structure. The characterization of Dokdo filter is studied. Dokdo filters related to filters are constructed. Dokdo filter and Dokdo deductive system turn out to be the same concept.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dokdo Filters and Deductive Systems of Sheffer Stroke Hilbert Algebras\",\"authors\":\"S. Ahn, H. Kim, S. Song, Y. Jun\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the filter and deductive system of the Schaefer stroke Hilbert algebra using the Dokdo structure, the concept of Dokdo filter and Dokdo deductive system is defined, examples are given, and various properties are investigated. The Dokdo filter is formed by attaching appropriate conditions to the given Dokdo structure. The characterization of Dokdo filter is studied. Dokdo filters related to filters are constructed. Dokdo filter and Dokdo deductive system turn out to be the same concept.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了利用独岛结构研究Schaefer-stroke-Hilbert代数的滤波器和演绎系统,定义了独岛滤波器和独岛演绎系统的概念,给出了例子,并研究了它们的各种性质。通过对给定的独岛结构附加适当的条件来形成独岛滤波器。研究了独岛滤波器的特性。构造了与滤波器相关的独岛滤波器。独岛滤波器和独岛演绎系统原来是同一个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dokdo Filters and Deductive Systems of Sheffer Stroke Hilbert Algebras
To investigate the filter and deductive system of the Schaefer stroke Hilbert algebra using the Dokdo structure, the concept of Dokdo filter and Dokdo deductive system is defined, examples are given, and various properties are investigated. The Dokdo filter is formed by attaching appropriate conditions to the given Dokdo structure. The characterization of Dokdo filter is studied. Dokdo filters related to filters are constructed. Dokdo filter and Dokdo deductive system turn out to be the same concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信