{"title":"一类带脉冲效应的$p$-Laplacian分数边值问题的无穷多解","authors":"M. Abolghasemi, S. Moradi","doi":"10.5269/bspm.47913","DOIUrl":null,"url":null,"abstract":"The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for a class of fractional boundary value problem with $p$-Laplacian with impulsive effects\",\"authors\":\"M. Abolghasemi, S. Moradi\",\"doi\":\"10.5269/bspm.47913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.47913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.47913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinitely many solutions for a class of fractional boundary value problem with $p$-Laplacian with impulsive effects
The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.