一类带脉冲效应的$p$-Laplacian分数边值问题的无穷多解

IF 0.4 Q4 MATHEMATICS
M. Abolghasemi, S. Moradi
{"title":"一类带脉冲效应的$p$-Laplacian分数边值问题的无穷多解","authors":"M. Abolghasemi, S. Moradi","doi":"10.5269/bspm.47913","DOIUrl":null,"url":null,"abstract":"The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for a class of fractional boundary value problem with $p$-Laplacian with impulsive effects\",\"authors\":\"M. Abolghasemi, S. Moradi\",\"doi\":\"10.5269/bspm.47913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.47913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.47913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Neumann条件下,建立了一类具有$p$-Laplacian算子的脉冲分数边值问题的无穷多解的存在性。我们的方法是基于最近定义在自反Banach空间上的光滑泛函的变分方法。给出了一个例子来证明我们的主要结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many solutions for a class of fractional boundary value problem with $p$-Laplacian with impulsive effects
The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信